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Bio-molecular network analysis

Yong Wang
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Beyond the network reconstruction

1. Components

Plurality of -omics ( Gen j ETranscript—j ( Proteo- j (Metal:}nl—j

2. Reconstruction B' ﬂ ﬂ ﬂ'

“Systemic annotation”

one set of reactions ( Reconstruction of biochemical reaction network )
arising from the

genome ﬂ

3. Insilicomodeli — e “
. N sco moagiing . e .
plurality of methods iTDpog}f) ii:c:-nstraints) ( Dynamlcs) f:Sensmwtyj ( Noise j

4. Hypothesis generation ﬂ Experiment
and testing o~
-CHiP-chip - _ B
Fluxomics Phenotypic space

“practically infinite”
for most organisms 3
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Characteristic Analysis method

They are complex Bioinformatics

They are autonomous Control theory

They are robust System science

They function to execute a physicochemical process Transport and Kinetic theory
They have “creative functions” Bifurcation analysis

They are conserved, but can adjust Evolutionary dynamics
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* J13173 T (Topology)
Hub and bottleneck
Hierachy structure
Network motif
o W25l M (Dynamics)
Hubs in different conditions
Subnetworks in different conditions
o 124 HMT (Subnetworks)
Aging and disease subnetwork
Evolution in TF subnetwork



Networks occupy a midway point in terms
of level of understanding
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1D: Complete
Genetic Partslist

[Fleischmann et al., Science, 269 :496]

~2D: Bio-molecular
Network
Wiring Diagram

[Jeong et al. Nature, 41:411]

3D: Detalled
structural
understanding of

cellular machinery
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Lﬁ.%mi‘?;_J Genes & Development, 16:3017-3033;
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Metabolic pathway networks mMiRNA-target networks 278:680-686]
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Q1: Finding Central Points
In Networks: Hubs &
Bottlenecks

Where are key points in networks ? How do we locate them ?
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THE NEW,
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www.shutterstock.com - 16229722
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Global topological measures

Indicate the gross topological structure of the network
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Interaction and expression networks are undirected
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Regulatory and metabolic networks are directed



Scale-free networks

A scale-free network is a network whose
Power-law distribution degree distribution follows a power law
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Hubs dictate the structure of the network

[Barabasi]
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Hubs tend to be Essential

Integrate gene essentiality data with protein
interaction network. Perhaps hubs represent

vulnerable points? Q. ?
[Lauffenburger, Barabasi] O
O
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[Yu et al., 2003, TIG]



[Yu et al., 2003, TIG]
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Rel-atinShips extends to "Marginal Essentiality"

Marginal essentiality measures relative importance of
each gene (e.g. in growth-rate and condition-specific

essentiality experiments) and scales continuously with D ? gi
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Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of
shortest paths of pairs of vertices that run
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness.
Sociometry 40: 35-41.

Girvan & Newman (2002) PNAS 99: 7821.
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Bottlenecks
& Hubs

B ottleneck

Hub-bottleneck node

Mon-hub-bottleneck node
Hub-non-bottleneck node

Mon-hub-non-bottleneck node

©
o
O
©

[Yu et al., PLOS CB (2007)]
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" Bottlenecks are what matters

IN regulatory networks

ud

40% -

30%

20%

FE

[

P <10

[0 Hub-non-bottlenecks

O Bottleneck-non-hubs

A

P<104

Interaction Network

[Yu et al., PLoS Comput Biol (2007)]

Regulatory Network



Q2: Does the Bio-molecular
networks posses hierarchy
structure

If the network has the hierarchy structure? How do we identify them?
What does it mean?



Hierarchy structure

When top level guys look down
they see only shit.

When bottom level guys look up
they see only assholes.

Management Hierachy



Determination of "Level” in Regulatory Network
Hierarchy with Breadth-first Search

|. Example network with all 4 motifs Il. Finding terminal nodes (Red)

Ill. Finding mid-level nodes (Green) IV. Finding top-most nodes (Blue)

Wi

[Yu et al., PNAS (2006)] .

Level 3

Level 2

Level 1 Level 1
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Regulatory Networks have similar
hierarchical structures

S. cerevisiae E. coli

[Yu et al., Proc Natl Acad Sci U S A (2006)]
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Example of Path Through

Regulatory Network

e EELTTTTEEEPPPPEEPFPPEE Expression of MOT3 is
' activated by heme and
@ oxygen. Mot3 in turn
activates the expression of
NOTS5 and GCN4, mid-
level hubs. GCN4
activates two specific
bottom-level TFs, Put3
and Uga3, which trigger
the expression of
enzymes in proline and
nitrogen utilization.

TRk 1T 2 |

@ Cytoplasm

Nucleus

O2, Heme

[Yu et al., PNAS (2006)]



A. Regulatory hierarchy in S. cerevisiae

Levelin hierarchy

T ZRANGroNP O

Yeast Regulatory Hierarchy

[Yu et al., PNAS (2006)]

—Average # of regulated genes (ocut-degree)
-=—# of TFs at each level




Yeast Network Similar in Structure to
Government Hierarchy with Respect to

Middle-managers

B. Governmental hierarchy of a representive city (Macao)

rarchy

C—Average # of regulated people (out-degree)
-=# of managers at each level

d

# of people
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Characteristics of Regulatory Hierarchy
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.Average betweenness at each level
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Managers are Information Flow Bottlenecks

15

10

Average betweenness (x1000)

[Yu et al., PNAS (2006)]



Q3: Are there some
building blocks In the Bio-
molecular networks?

Where are they? How do we identify them? What does it mean?



Circuit network
Building blocks: Switch, feed-back loop, oscillator...
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Network Motifs: simple Building
Blocks of Complex Networks

R. Milo et. al. Science 298, 824 (2002)

e the design principles of this network
e “Evolution preserves modules that define specific function.”

 Motifs are those subgraphs which occur in higher frequencies
than in random graphs.
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The cell and the environment

 Cells need to react to their environment
e Reaction is by synthesizing task-specific proteins, on demand.
 The solution — regulated transcription network

Environment \ ! /

Transcnpuon
| + factors

gene 1 gene2 gene3 gened4 gene5 gene6 ...genek

e E.Coli—1000 protein types at any given moment >4000 genes (or possible protein
types) — need regulatory mechanism to select the active set

e We are interested in the design principles of this network



Analyzing networks

 The idea- patterns that occur in the real
network much more then in a randomized
network, must have functional significance.

e The randomized networks share the same
number of edges and number of nodes, but
edges are assighed at random

real network randomized networks




The known E. Coli transcription network
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-node network motif — the feedforward loop
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The feedforward loop is a filter for transient signals while allowing fast shutdown

Mangan, Alon, PNAS, JMB, 2003

X = X(1)

dY
—=0(X—-kvww)—Y
" ( Xy )
dZ
EZH(X_KXZ)H(Y_KYZ)_Z
b [ inpux

gost |
1]
0 2 4 6
if v

L -
0 2 4 &
1" ::utpu'z

ﬁﬂ-:' 1

¢ 2 4 6



T o ZRANGrouip

The Feedforward loop : a sign sensitive filter
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Single Input Module

O
X

T

212, .. Zy

on |2 /”I”I—k3 X:X(t)
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o 1 2 3 4 5 | d.t

HE 3;7 {kl <k <...<k,
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time

Temporal and expression level program generator

* The temporal order is encoded in a hierarchy of thresholds
» Expression levels hierarchy is encoded in hierarchy of promoter activities
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Q4: Hubs In the Iinteractome network are
known to be very important to the network
topology and function.
Considering the temporal aspect of the
Interactome, are all hubs equal?
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Yeast hubs are three-times more likely
to be essential

Yeast Interactome mapped by Y2H is scale-free

G

=

2

|
0 5 10 15 20
Mo, of links

Parcantage of essential proteins
& B
W
——

-

Jeong et al Nature 2001



Static view of the Iinteractome network

Let’'s introduce other dimension.



A Array Data

Expression Level

G1
G2
G3
G4
G5
G6
G7
G8
G9

. -
Correlation coefficients for all genes

v

B Similarity Matrix (correlation)

G1
1
06
0.2
0.8
0.9
06
0.9
0.1
0.5

G10 03

G2
0.6
1
0.9
0.1
0.2
0.6
1.0
0.1
0.3
0.4

G3
0.2
0.9
1
0.2
0.3
0.4
0.8
0.2
0.3
0.9

| W

Sample Type

G4
0.8
0.1
0.2
1
0.9
0.9
0.8
0.3
0.6
0.0

G5
0.9
0.2
0.3
0.9
1
0.9
0.9
0.6
0.1
0.5

G6
0.6
0.6
0.4
0.9
0.9
1
0.6
0.2
0.7
0.1

—

G7
0.9
1.0
0.8
0.8
0.9
06
1
0.8
0.9
0.2

G8
0.1
0.1
0.2
0.3
0.6
0.2
0.8
1
0.9
0.2

G9 G10

0.5
0.3
0.3
0.6
0.1
0.7
0.9
0.9
1
0.9

Threshold corrglations into edges
il

0.3
0.4
0.9
0.0
0.5
0.1
0.2
0.2
0.9

C Adjacency Matrix v

Gl G2 G3 G4 G5

G1 NA O
G2 0O NA
G3 0O E
G4 E O
G5 E O
G6 0 O
G7 E E
G8 0 O
G9 O O
G1I0 0O O
D Network

0

mMOOMOOOSEm

G6 G7

E E 0O E
0 O 0 E
O O 0 E
NA E E E
E NA E E
E E NA O
E E O NA
0O O 0 E
0O O 0 E
O O 0] 0

|

Draw network
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http://www.biomedcentral.com/1471-2164/7/40/figure/F1�
http://www.biomedcentral.com/1471-2164/7/40/figure/F1�

Probability density

T ZRANGroNP O

Co-expression In different conditions

Compendium Stress response Cell cycle
g | n=315 ;| n=174 | n=77
4 4 4
3 4 3 3
2 2 1 21
11 11 11
0 ——r — 0 ey — 0 et . .
=1.0 =0.5 0 0.5 1.0 =10 =05 0 0.5 1.0 =10 =05 0 0.5 1.0
Pheromone treatment Unfolded protein response Sporulation
5] N=45 5 n=10 5| n=9
4 - 4 4
34 31 T 31
W
2 2] l, 2
14 1] 11
U - g g g D - ¥ ¥ T T T D - T L] L] T
-1.0 =0.5 0 0.5 1.0 =-1.0 =05 0 0.5 1.0 =10 =05 0 0.5 1.0
Average PCC
-- hubs; , -- randomized net 43



Are all hubs equal?
Dynamic or temporal aspects of interactome networks

’>é ' ~
\ ] ‘
| Party Hub

Same time
and space

Date Hub
Different time
and/or space

e

Party Hub
Same time
and space

Han et al. Nature, 2004



Thelr Role In the Net

Full Net No Date Hubs No Party Hubs

45



In silico simulation of node removal

a 18

Breakdown points
16

-- Random 14
-- Hubs
-- Party
-- Date

—L
Mo

—
=

Characteristic path length
oo

D | |

| |
0 0.05 0.10 0.15 0.20 0.25
Fraction of nodes removed

Characteristic Path Length: For any connected graph G, the
average distance between pairs of vertices is referred to as
the graph's "characteristic path length” 46
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Dynamic modular structure of yeast interactome

: : Budding, Cell Polarity
Homeostasis of Other Cations - nd Filament Formation

Party hubs functieriinside a&%u.
certain fundtiofal module "+ 7. .

functional modules at highler
le

Date hubs connect differ?t

el

Protein Folding and stabilization

Endoplasmic Reticulum *

Han et al. Nature, 2004
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Q5: Substructure In the interactome network
are known to be very important to the
network topology and function.
Considering the condition aspect of the
Interactome, are all them equal?



Dynamic Yeas

Transcription Factors

Target Genes

t TF network

* Analysed network as a
static entity

o But network is dynamic

— Different sections of the
network are active
under different cellular
conditions

* Integrate more gene
expression data

[Luscombe et al, Nature (In press)]
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Gene expression data

* Genes that are differentially expressed under five
cellular conditions

Cellular condition No. genes
Cell cycle 437
Sporulation 876
Diauxic shift 1,876
DNA damage 1,715
Stress response 1,385

« Assume these genes undergo transcription regulation

[Luscombe et al, Nature]



e |Identify TFs that regulate these genes

O O » Define differentially expressed genes
/A
1

X | » Identify further TFs that regulate these TFs
~
TV
[ O
O A O Active regulatory sub-network
V' \ -

[Luscombe et al, Mature (In press)]



Network usage under cell cycle

complete network cell cycle sub-network

e 142 TFs e 70 TFs
e 3,420 genes e 280 genes
e 7.074 interactions * 550 interactions

[Luscombe et al, Mature (In press)]



Network usage under different conditio

Cell cycle Sporulation Diauxic shift DNA damage Stress

How do the networks change?
» topological measures
* network motifs

[Luscombe et al, Mature (In press)]
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— [Barabasi]

Our expectation

o Literature: Network topologies are perceived to be invariant

— Scale-free, small-world, and clustered
— Different molecular biological networks
— Different genomes

« Random expectation: Sample different size sub-networks
from complete network and calculate topological measures

1

average incoming degree

a.

2

8

1 4

g4

1]

incoming degree

=

)
=
=

300 &00 900 1200

random network size

3

z 251
B2
£ 15
1_
b

2 05 -

o

path length

/\\—-

300

B00 300 1200

network size

average clustering

clustering coefficient

0.1

coefficient
[
(]

1]

]
]

o~

—
8]

average outgoing degree
=]

300

T T 0
B00 300 1200

network size

(g}
1

Co i e " o ZHANGroup

outgoing degree

| /

300

B00 900

network size

Measures should remain constant

[Luscombe et al, Mature (In press)]

1200



Outgoing degree

[
Lo

=
n

n

average outgoing degree
=

(o]

cell cycle
sporulation

<

diauxic
shift
DNA
damage
stress
response

v

Multi-stage:

Controlled, ticking '

over of genes
at different stages

Binary:
Quick, large-scale
turnover of genes

* “Binary conditions”
=>greater connectivity

e “Multi-stage conditions
->|ower connectivity

[Luscombe et al, Mature (In press)]



average path legth
= g L] N Ly

o

Path length

=2 5 ; &= % 3

(8] — = W

> 5 i35 zg §s

= = T 0O s s 2

2 S A
W

Multi-stage Binary

* “Binary conditions”
- shorter path-length
- “faster”, direct action

e “Multi-stage” conditions

- longer path-length
- “slower”, indirect action

[Luscombe et al, Mature (In press)]
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cell cycle

sporulation
response

Multi-stage

“Binary conditions”
->smaller coefficients
—>|ess TF-TF inter-regulation

“Multi-stage conditions”

= larger coefficients
- more TF-TF inter-regulation

[Luscombe et al, Mature (In press)]
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Our expectation

o Literature: motif usage is well conserved for
regulatory networks across different organisms [Alon]

 Random expectation: sample sub-networks and
calculate motif occurrence

single input motif multiple input motif feed-forward loop

|
=

g B — g B0 g B0 -

S 50 A 5 50 £ A0 -

S 40 5 40 3 404

S 30~ & 30 2

E E _|3|:|— \
@ 20 4 = 20 20 -

= 10 w{ <7 = 104

0 0 0

1200

B0

B0 500

random network size

Motif usage should remain constant

[Luscombe et al, Mature (In press)]



":
Network motifs

Motifs Cell cycle | Sporulat | Diauxic DNA Stress
ion shift damage | response
SIM /\ 32.0% 38.9% 57.4% 55.7% 59.1%
o O .
MIM M 23.7% 16.6% 23.6% 27.3% 20.2%
o O
FFL : 44.3% 44.5% 19.0% 17.0% 20.7%

#

[Luscombe et al, Mature (In press)]
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multi-stage conditions

0 ~0
= v
RO
>0
v
©
O

e fewer target genes

e longer path lengths

e more inter-regulation
between TFs

Summary of sub-network structures

o ZHANGroup ot

o
o A/°
o % ©
% G
o O
o

e more target genes

e shorter path lengths

e |less inter-regulation
between TFs

[Luscombe et al, Mature (In press)]



Q6: Aging and disease are known to
be closely related.
Can we see this relationship in the
Interactome?
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OPEN @ ACCESS Freely available online PLOS compurtationaL sioLoGY

Disease-Aging Network Reveals Significant Roles of
Aging Genes in Connecting Genetic Diseases

Jiguang Wang'?, Shihua Zhang', Yong Wang', Luonan Chen®**#, Xiang-Sun Zhang'*

1 Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, 2 Graduate School of the Chinese Academy of Sciences, Beijing, China,
3 Institute of Systems Biology, Shanghai University, Shanghai, China, 4 Department of Electrical Engineering and Electronics, Osaka Sangyo University, Osaka, Japan

Abstract

One of the challenging problems in biology and medicine is exploring the underlying mechanisms of genetic diseases.
Recent studies suggest that the relationship between genetic diseases and the aging process is important in understanding
the molecular mechanisms of complex diseases. Although some intricate associations have been investigated for a long
time, the studies are still in their early stages. In this paper, we construct a human disease-aging network to study the
relationship among aging genes and genetic disease genes. Specifically, we integrate human protein-protein interactions
(PPIs), disease-gene associations, aging-gene associations, and physiological system-based genetic disease classification
information in a single graph-theoretic framework and find that (1) human disease genes are much closer to aging genes
than expected by chance; and (2) diseases can be categorized into two types according to their relationships with aging.
Type | diseases have their genes significantly close to aging genes, while type Il diseases do not. Furthermore, we examine
the topological characters of the disease-aging network from a systems perspective. Theoretical results reveal that the
genes of type | diseases are in a central position of a PPl network while type Il are not; (3) more importantly, we define an
asymmetric closeness based on the PPl network to describe relationships between diseases, and find that aging genes make
a significant contribution to associations among diseases, especially among type | diseases. In conclusion, the network-
based study provides not only evidence for the intricate relationship between the aging process and genetic diseases, but
also biological implications for prying into the nature of human diseases.




DISEASOME

disease phenome

disease

-

Associlation

—

"

S

Pwaaca

Lres

MAD LY

L

muh\.-“g.. -

Sher somse pdfeega synarome o

rancffpers e
Disease



Bene

Cancer

Cardiovascular

Connective tissi-= “i=====

Dermatological
evelopmental

D
Ear Nose Throat
ndorine

‘Gastrointestinal
Hamatological
Immunological
Metabolic
‘WMuscular
Neurological
- @Nutritional
, @O phthamologic:
@Psychiatric
Renal
Respiratory
Skeletal
«_Multiple
@Unclassified
MD

OAging




Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging. Type |
diseases have their genes significantly close to
aging genes, while type Il diseases do not.

(3) Aging genes make a significant contribution to
associations among diseases.
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9045 genes in PPl network
226 105 1317
Aging \Overlap, Diseases

aging degree
genes Observed Random P-value

<20 9.38 2.51 1.99 7.3e-8
20-50 33.33 8.53 7.05 7.8e-7
50-100 69.27 17.49 14.52 1.9e-8
>100 139.81 33.86 28.82 1.4e-7



Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging. Type
| diseases have their genes significantly close to
aging genes, while type Il diseases do not.

(3) aging genes make a significant contribution to
associations among diseases.
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Table 2. Different GOA enrichments of ARD and NARD.

GO-ID ARD NARD Description
p-value #Genes p-value #Genes
3676 1.4e-4 156 1.1e-10(under) 68 nucleic acid binding
5634 3.2e-13 193 2.2e-7(under) 79 nucleus
6139 5.0e-19 194 3.7e-03(under) 113 nucleobase, nucleoside, nucleotide and nucleic acid metabolic proc
5622 1.1e-9 411 =0.01 391 intracellular
16301 24e-8 63 =0.01 44 oxidoreductase activity
30528 5.3e-15 112 =0.01 49 transcription regulator activity
43170 34e-11 313 =0.01 295 macromolecule metabolic process
3824 =0.01 206 1.6e-8 282 catalytic activity
5478 =0.01 58 3.9e-10 101 transporter activity
9055 =0.01 12 8.3e-7 56 catabolic process
9056 =0.01 29 2.5e-5 85 biosynthetic process
9405 =0.01 2 7.6e-7 20 cell surface
9929 =0.01 11 2.9e-7 60 ion transmembrane transporter activity
15075 =>0.01 36 8.5e-6 37 channel activity
5941 =0.01 1 4.6e-4 6 unlocalized protein complex
16740 =>0.01 76 1.2e-5 129 hydrolase activity
16787 =0.01 88 1.9e-5 20 lyase activity
16874 =0.01 13 1.4e-7 113 cell differentiation




Results

(1) Human disease genes are much closer to aging
genes than expected by chance.

(2) Diseases can be categorized into two types
according to their relationships with aging. Type |
diseases have their genes significantly close to
aging genes, while type Il diseases do not.

(3) aging genes make a significant contribution to
associations among diseases.
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Q7: Regarding to evolution principles,
IS the subnetwork and the whole
Interactome the same?



TF subnetwork Vs whole network

 \We study evolutionary principles in the
network of an important subset of proteins,
the transcription factors (TFs).

e TFs are important regulators of cellular
processes at the transcriptional level.

 The interactions and coordinated actions of
multiple TFs in the TF network provide a
primary mechanism for achieving fine-tuned
transcriptional control in eukaryotes.
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Well-known result

Hubs in the S. cerevisiae protein-protein interaction
network tend to evolve more slowly than non-hubs

1.2 ¢
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Number of interactions

A protein’s number of interaction partners exerts some influence on its
evolutionary rate, most likely due to increased structural co-evolutionary
constraints imposed by protein-protein interaction (negative selection) .

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752.


http://www.sciencemag.org/content/vol296/issue5568/images/large/se1520393001.jpeg�
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Surprising findings

hubs in the yeast TF network tend to evolve
more quickly than non-hubs

This result holds for all four major types of TF
hubs:

. Interaction hubs that interact with many other TFs
. Regulatory in-degree hubs that are regulated by many TFs
. Regulatory out-degree hubs that regulate many TFs

. co-regulatory hubs that jointly regulate target genes (TGs)
with many other TFs.



TF networks

* We collected 174 yeast TFs and assembled the

whole-genome TF network based on three types of
associations:

e protein-protein interactions among TFs (forming the

TF interactome)

e transcriptional regulatory relationships among TFs

(forming the TF transcriptional regulatory network)

e joint regulation of target genes among TFs (forming

the TF co-regulatory network)



Evolutionary rate

Evolutionary rate was measured as the K, /K. ratio calculated
over alignments between the coding sequences of S. cerevisiae
and their orthologs in S. paradoxus (the closest related yeast
with a sequenced genome).

KA/Ks is the ratio of the rate of non-synonymous substitutions
(K,) to the rate of synonymous substitutions (K.), and serves as
an approximate measure of the strength of sequence selection
acting on a protein (factoring out mutational background and
translational selection).

Smaller K,/K; values are associated with heightened purifying
selection (reduced evolutionary rate), while larger values are
associated with neutral or adaptive evolution (increased
evolutionary rate).
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TF interaction hubs evolve fast

e The evolutionary rate of TF hubs is significantly greater on
average than the evolutionary rate of TF non-hubs (p = 0.04).

e The mean of these sampled correlations between protein
evolutionary rate and generic protein-protein interactions is
significantly different from the observed correlation between
TF evolutionary rate and TF-TF interactions (p < 1.0 X 10°).

e We conclude that TF-TF interactions and generic protein-
protein interactions evolve in very different ways: hubs in the
protein interactome tend to evolve more slowly than non-
hubs, whereas hubs in the TF interactome tend to evolve
more quickly than non-hubs.
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Network rewiring model

We hypothesize that protein-protein interactions operate at a low
level in the cellular network, and tend to be conserved during
evolution.

On the other hand, TF-TF associations operate at a high level in
the cellular regulatory hierarchy, and tend to rewire during
evolution.

Protein-protein interactions are fundamental to the basic
functions of a living cell; more interaction partners for a particular
protein will lead to greater structural and functional constraint,
resulting in negative selection.

In contrast, TF-TF associations are more easily changed in
evolution compared to protein-protein interactions. Positive
selection acts to fix specific TF-TF associations that are beneficial
to a particular organism in a particular environment. The rewiring
of TF-TF associations also encourages adaptive TF evolution.
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L esson learned

 We observe that while generic protein hubs tend to
evolve more slowly than non-hubs, TF hubs tend to
evolve more quickly than TF non-hubs.

 We made the surprising finding that two of the most
important interactome subnetworks, the TF
interactome and the protein interactome, are
fundamentally different in terms of their function and
evolution.

 Our work demonstrates a high degree of functional and
evolutionary heterogeneity within biological networks,
and highlights the rich insights that can be gained from
modeling biomolecular subnetworks.
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Take-home messages

Network is powerful
Network is a new platform
Network can be dangerous

More stories in network can be expected, but
we need to ask a good question first!!!
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