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Beyond the network reconstruction



4

生物分子网络特性及分析方法



网络分析
• 拓扑分析 (Topology)
Hub and bottleneck

Hierachy structure

Network motif

• 网络动态分析 (Dynamics)
Hubs in different conditions

Subnetworks in different conditions

• 子网络分析 (Subnetworks)
Aging and disease subnetwork 

Evolution in TF subnetwork



Networks occupy a midway point in terms 
of level of understanding

1D: Complete 
Genetic Partslist

~2D: Bio-molecular
Network

Wiring Diagram

3D: Detailed 
structural 

understanding of 
cellular machinery

[Jeong et al. Nature, 41:411][Fleischmann et al., Science, 269 :496]



Networks as a universal language

Disease 
Spread

[Krebs]

Protein
Interactions

[Barabasi] Social Network

Food Web

Neural Network
[Cajal]

Electronic
Circuit

Internet
[Burch & Cheswick]



Different Types of Molecular Networks

Protein-protein Interaction networks

[Toenjes, et al, Mol. BioSyst. (2008); 
Jeong et al, Nature (2001); [Horak, et al, 
Genes & Development, 16:3017-3033; 
DeRisi, Iyer, and Brown, Science, 
278:680-686]

TF-target-gene Regulatory networks

Undirected

Directed

Metabolic pathway networks miRNA-target networks



Q1: Finding Central Points 
in Networks: Hubs & 

Bottlenecks
Where are key points in networks ? How do we locate them ?



Hub & bottleneck?



Global topological measures
Indicate the gross topological structure of the network

Degree (K ) Path length (L ) Clustering coefficient (C )

Interaction and expression networks are undirected

5 2 1/6



Global 
topological 
measures 

for directed 
networks In-degree

TFs

Targets

Regulatory and metabolic networks are directed

Out-degree
53



Scale-free networks

Hubs dictate the structure of the network

log(Degree)
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Power-law distribution

[Barabasi]

A scale-free network is a network whose 
degree distribution follows a power law



Hubs tend to be Essential

EssentialNon- Essential

Integrate gene essentiality data with protein 
interaction network. Perhaps hubs represent 
vulnerable points?
[Lauffenburger, Barabasi]
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Relationships extends to "Marginal Essentiality"

EssentialNot important

Marginal essentiality measures relative importance of 
each gene (e.g. in growth-rate and condition-specific 
essentiality experiments) and scales continuously with 
"hubbiness"

important Very important
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Another measure of Centrality:
Betweenness centrality

Betweenness of a node is the number of 
shortest paths of pairs of vertices that run 
through it -- a measure of information flow.

Freeman LC (1977) Set of measures of centrality based on betweenness. 
Sociometry 40: 35–41. 

Girvan & Newman (2002) PNAS 99: 7821.



Bottlenecks 
& Hubs

[Yu et al., PLOS CB (2007)]
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Bottlenecks are what matters 
in regulatory networks

P < 10-20

P < 10-4

[Yu et al., PLoS Comput Biol (2007)]



Q2: Does the Bio-molecular 
networks posses hierarchy 

structure
If the network has the hierarchy structure? How do we identify them? 

What does it mean?



Hierarchy structure

Management Hierachy



Determination of "Level“ in Regulatory Network 
Hierarchy with Breadth-first Search
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[Yu et al., PNAS (2006)]



Regulatory Networks have similar 
hierarchical structures

S. cerevisiae E. coli

[Yu et al., Proc Natl Acad Sci U S A (2006)]
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2
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4



Example of Path Through 
Regulatory Network

[Yu et al., PNAS (2006)]

Expression of MOT3 is 
activated by heme and 
oxygen. Mot3 in turn 
activates the expression of 
NOT5 and GCN4, mid-
level hubs. GCN4 
activates two specific 
bottom-level TFs, Put3 
and Uga3, which trigger 
the expression of 
enzymes in proline and 
nitrogen utilization.

亚铁血红素



Yeast Regulatory Hierarchy

[Yu et al., PNAS (2006)]



Yeast Network Similar in Structure to 
Government Hierarchy with Respect to 

Middle-managers



Characteristics of Regulatory Hierarchy: Middle 
Managers are Information Flow Bottlenecks

[Yu et al., PNAS (2006)]



Q3: Are there some 
building blocks in the Bio-

molecular networks?
Where are they? How do we identify them? What does it mean?



Circuit network
Building blocks: Switch, feed-back loop, oscillator…



• R. Milo et. al. Science 298, 824 (2002)

• the design principles of this network
• “Evolution preserves modules that define specific function.”

• Motifs are those subgraphs which occur in higher frequencies 
than in random graphs.

Network Motifs: simple Building 
Blocks of Complex Networks



The cell and the environment
• Cells need to react to their environment

• Reaction is by synthesizing task-specific proteins, on demand.

• The solution – regulated transcription network

• E. Coli – 1000 protein types at any given moment >4000 genes (or possible protein 
types) – need regulatory mechanism to select the active set

• We are interested in the design principles of this network



Analyzing networks
• The idea- patterns that occur in the real 

network much more then in a randomized 
network, must have functional significance. 

• The randomized networks share the same 
number of edges and number of nodes, but 
edges are assigned at random



The known E. Coli transcription network



A random graph based on the same node statistics



3-node network motif – the feedforward loop

Nreal=40

Nrand=7±3 



Mangan, Alon, PNAS, JMB, 2003

The feedforward loop : a sign sensitive filter

The feedforward loop is a filter for transient signals while allowing fast shutdown



OFF pulse

Vs.

=lacZYA =araBAD

The Feedforward loop : a sign sensitive filter

Mangan, Alon, PNAS, JMB, 2003



Temporal and expression level program generator
• The temporal order is encoded in a hierarchy of thresholds 
• Expression levels hierarchy is encoded in hierarchy of promoter activities

Single Input Module

3k

2k

1k

Z1
Z2 
Z3

3k

2k

1k

Z1
Z2
Z3



Q4: Hubs in the interactome network are 
known to be very important to the network 

topology and function. 
Considering the temporal aspect of the 

interactome, are all hubs equal?



Jeong et al Nature 2001

Yeast hubs are three-times more likely
to be essential

Yeast Interactome mapped by Y2H is scale-free



Static view of the interactome network

Let’s introduce other dimension.



http://www.biomedcentral.com/1471-2164/7/40/figure/F1�
http://www.biomedcentral.com/1471-2164/7/40/figure/F1�
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Co-expression in different conditions

-- hubs; -- non-hubs; -- randomized net



Han et al. Nature, 2004

Are all hubs equal?
Dynamic or temporal aspects of interactome networks



45

Their Role in the Net

Full Net No Date Hubs No Party Hubs
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-- Random
-- Hubs
-- Party
-- Date

In silico simulation of node removal

Characteristic Path Length: For any connected graph G, the 
average distance between pairs of vertices is referred to as 
the graph's "characteristic path length”



Dynamic modular structure of yeast interactome

Date hubs connect different 
functional modules at higher 

level

Party hubs function inside a 
certain functional module

Han et al. Nature, 2004



Q5: Substructure in the interactome network 
are known to be very important to the 

network topology and function. 
Considering the condition aspect of the 

interactome, are all them equal?



Target Genes

Transcription Factors • Analysed network as a 
static entity

• But network is dynamic
– Different sections of the 

network are active 
under different cellular 
conditions

• Integrate more gene 
expression data

Dynamic Yeast TF network

[Luscombe et al, Nature (In press)]



• Genes that are differentially expressed under five 
cellular conditions

• Assume these genes undergo transcription regulation

Gene expression data

Cellular condition No. genes

Cell cycle 437
Sporulation 876

Diauxic shift 1,876
DNA damage 1,715
Stress response 1,385

[Luscombe et al, Nature]



Backtracking to find active sub-network

• Define differentially expressed genes

• Identify TFs that regulate these genes

• Identify further TFs that regulate these TFs

Active regulatory sub-network

[Luscombe et al, Nature (In press)]



cell cycle sub-network

• 70 TFs
• 280 genes
• 550 interactions

Network usage under cell cycle

complete network

• 142 TFs
• 3,420 genes
• 7,074 interactions

[Luscombe et al, Nature (In press)]



Network usage under different condition

Cell cycle Sporulation Diauxic shift DNA damage Stress

How do the networks change?
• topological measures
• network motifs

[Luscombe et al, Nature (In press)]



Our expectation

Measures should remain constant

• Literature: Network topologies are perceived to be invariant 
– [Barabasi]
– Scale-free, small-world, and clustered
– Different molecular biological networks 
– Different genomes

• Random expectation: Sample different size sub-networks 
from complete network and calculate topological measures

path length clustering coefficient outgoing degreeincoming degree

random network size

[Luscombe et al, Nature (In press)]



Outgoing degree

• “Binary conditions” 
greater connectivity

• “Multi-stage conditions” 
lower connectivity

Binary:
Quick, large-scale 
turnover of genes

Multi-stage:
Controlled, ticking 

over of genes 
at different stages

[Luscombe et al, Nature (In press)]



Path length

• “Binary conditions” 
 shorter path-length
 “faster”, direct action

• “Multi-stage” conditions 
 longer path-length
 “slower”, indirect action

BinaryMulti-stage

[Luscombe et al, Nature (In press)]



Clustering coefficient

• “Binary conditions” 
smaller coefficients
less TF-TF inter-regulation

• “Multi-stage conditions”
 larger coefficients
 more TF-TF inter-regulation

BinaryMulti-stage

[Luscombe et al, Nature (In press)]



Our expectation

Motif usage should remain constant

• Literature: motif usage is well conserved for 
regulatory networks across different organisms [Alon]

• Random expectation: sample sub-networks and 
calculate motif occurrence

single input motif multiple input motif feed-forward loop

random network size

[Luscombe et al, Nature (In press)]



Network motifs

Motifs Cell cycle Sporulat
ion

Diauxic 
shift

DNA 
damage

Stress 
response

SIM 32.0% 38.9% 57.4% 55.7% 59.1%

MIM 23.7% 16.6% 23.6% 27.3% 20.2%

FFL 44.3% 44.5% 19.0% 17.0% 20.7%

[Luscombe et al, Nature (In press)]



Summary of sub-network structures

multi-stage conditions

• fewer target genes
• longer path lengths
• more inter-regulation 

between TFs

binary conditions

• more target genes
• shorter path lengths
• less inter-regulation 

between TFs
[Luscombe et al, Nature (In press)]



Q6: Aging and disease are known to 
be closely related. 

Can we see this relationship in the 
interactome?





Aging Disease

Association 



65



(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. Type I 
diseases have their genes significantly close to 
aging genes, while type II diseases do not.

(3) Aging genes make a significant contribution to 
associations among diseases.

Results



Degree of 
aging 
genes

Average 
degree

Disease genes

Observed Random P-value

<20 9.38 2.51 1.99 7.3e-8

20-50 33.33 8.53 7.05 7.8e-7

50-100 69.27 17.49 14.52 1.9e-8

>100 139.81 33.86 28.82 1.4e-7



(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. Type 
I diseases have their genes significantly close to 
aging genes, while type II diseases do not.

(3) aging genes make a significant contribution to 
associations among diseases.

Results







(1) Human disease genes are much closer to aging 
genes than expected by chance.

(2) Diseases can be categorized into two types 
according to their relationships with aging. Type I 
diseases have their genes significantly close to 
aging genes, while type II diseases do not.

(3) aging genes make a significant contribution to 
associations among diseases.

Results





内分泌

神经



神经

免疫



Q7: Regarding to evolution principles, 
is the subnetwork and the whole 

interactome the same?



TF subnetwork Vs whole network
• We study evolutionary principles in the 

network of an important subset of proteins, 
the transcription factors (TFs).  

• TFs are important regulators of cellular 
processes at the transcriptional level.  

• The interactions and coordinated actions of 
multiple TFs in the TF network provide a 
primary mechanism for achieving fine-tuned 
transcriptional control in eukaryotes.



Well-known result

Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW (2002) Evolutionary rate in the protein interaction network. Science 296: 750-752.

Hubs in the S. cerevisiae protein-protein interaction 
network tend to evolve more slowly than non-hubs 

A protein’s number of interaction partners exerts some influence on its 
evolutionary rate, most likely due to increased structural co-evolutionary 
constraints imposed by protein-protein interaction (negative selection) .

http://www.sciencemag.org/content/vol296/issue5568/images/large/se1520393001.jpeg�


Surprising findings

• hubs in the yeast TF network tend to evolve 
more quickly than non-hubs

• This result holds for all four major types of TF 
hubs: 

1. Interaction hubs that interact with many other TFs

2. Regulatory in-degree hubs that are regulated by many TFs

3. Regulatory out-degree hubs that regulate many TFs

4. co-regulatory hubs that jointly regulate target genes (TGs) 
with many other TFs.



TF networks

• We collected 174 yeast TFs and assembled the 
whole-genome TF network based on three types of 
associations: 

• protein-protein interactions among TFs (forming the 
TF interactome)

• transcriptional regulatory relationships among TFs 
(forming the TF transcriptional regulatory network)

• joint regulation of target genes among TFs (forming 
the TF co-regulatory network)



Evolutionary rate
• Evolutionary rate was measured as the KA/KS ratio calculated 

over alignments between the coding sequences of  S. cerevisiae
and their orthologs in S. paradoxus (the closest related yeast 
with a sequenced genome).  

• KA/KS is the ratio of the rate of non-synonymous substitutions 
(KA) to the rate of synonymous substitutions (KS), and serves as 
an approximate measure of the strength of sequence selection 
acting on a protein (factoring out mutational background and 
translational selection).  

• Smaller KA/KS values are associated with heightened purifying 
selection (reduced evolutionary rate), while larger values are 
associated with neutral or adaptive evolution (increased 
evolutionary rate).



同义与非同义的核苷酸替代

• 1. 同义替代：编码区的DNA序列，核苷酸
的改变不改变编码的氨基酸的内容

• 2.非同义替代：核苷酸改变，从而改变编码
氨基酸的内容



Ka/Ks：计算及含义

• 1. Ka：每个非同义位点的非同义替代数目

• 2. Ks：每个同义位点的同义替代数目

• 3. 一般计算公式：考虑序列上所有可能的同义位点
(S)和非同义位点(N)，通过双序列比对发现存在的同
义位点(Sd)和非同义位点(Nd)，存在：

S
S
N
N

KsKa
d

d

=/



Ka/Ks：计算及含义 (2)

• 1. Ka/Ks ~ 1: 中性进化；

• 2. ka/Ks << 1: 阴性选择，净化选择；

• 3. ka/Ks >> 1: 阳性选择，适应性进化

• 4. 多数基因为中性进化，约1%的基因受到阳

性选择->决定物种形成、新功能的产生。

• 5. PAML, MEGA等工具：计算Ka/Ks及统计显

著性



High

Low

Medium

Medium low

Medium high

Physical interaction

Genetic interaction
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TF interaction hubs evolve fast
• The evolutionary rate of TF hubs is significantly greater on 

average than the evolutionary rate of TF non-hubs (p = 0.04).

• The mean of these sampled correlations between protein 
evolutionary rate and generic protein-protein interactions is 
significantly different from the observed correlation between 
TF evolutionary rate and TF-TF interactions (p < 1.0×10-6).

• We conclude that TF-TF interactions and generic protein-
protein interactions evolve in very different ways: hubs in the 
protein interactome tend to evolve more slowly than non-
hubs, whereas hubs in the TF interactome tend to evolve 
more quickly than non-hubs.
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Network rewiring model
• We hypothesize that protein-protein interactions operate at a low 

level in the cellular network, and tend to be conserved during 
evolution.  

• On the other hand, TF-TF associations operate at a high level in 
the cellular regulatory hierarchy, and tend to rewire during 
evolution.  

• Protein-protein interactions are fundamental to the basic 
functions of a living cell; more interaction partners for a particular 
protein will lead to greater structural and functional constraint, 
resulting in negative selection. 

• In contrast, TF-TF associations are more easily changed in 
evolution compared to protein-protein interactions. Positive 
selection acts to fix specific TF-TF associations that are beneficial 
to a particular organism in a particular environment. The rewiring 
of TF-TF associations also encourages adaptive TF evolution.  
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Lesson learned
• We observe that while generic protein hubs tend to 

evolve more slowly than non-hubs, TF hubs tend to 
evolve more quickly than TF non-hubs.  

• We made the surprising finding that two of the most 
important interactome subnetworks, the TF 
interactome and the protein interactome, are 
fundamentally different in terms of their function and 
evolution. 

• Our work demonstrates a high degree of functional and 
evolutionary heterogeneity within biological networks, 
and highlights the rich insights that can be gained from 
modeling biomolecular subnetworks.



Take-home messages

• Network is powerful

• Network is a new platform

• Network can be dangerous

• More stories in network can be expected, but 
we need to ask a good question first!!!
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