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Although several studies have provided important insights into the general principles of biological
networks, the link between network organization and the genome-scale dynamics of the underlying
entities (genes, mRNAs, and proteins) and its role in systems behavior remain unclear. Here we
show that transcription factor (TF) dynamics and regulatory network organization are tightly
linked. By classifying TFs in the yeast regulatory network into three hierarchical layers (top, core,
and bottom) and integrating diverse genome-scale datasets, we find that the TFs have static and
dynamic properties that are similar within a layer and different across layers. At the protein level,
the top-layer TFs are relatively abundant, long-lived, and noisy compared with the core- and bottom-
layer TFs. Although variability in expression of top-layer TFs might confer a selective advantage, as
this permits at least some members in a clonal cell population to initiate a response to changing
conditions, tight regulation of the core- and bottom-layer TFs may minimize noise propagation and
ensure fidelity in regulation. We propose that the interplay between network organization and TF
dynamics could permit differential utilization of the same underlying network by distinct members
of a clonal cell population.
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Introduction

Transcription factors (TFs), one of the key determinants of
gene expression, regulate mRNA synthesis depending on
intrinsic and extrinsic signals. The set of all regulatory
interactions between TFs and their target genes (TGs) in a
cell can be represented as a transcription regulatory network in
which nodes represent TFs and TGs, and directed edges
represent the regulation of TGs by TFs. This representation
provides a powerful framework to uncover the general
organizational principles of transcription regulation (Babu
et al, 2004; Barabasi and Oltvai, 2004). This has been shown
primarily by investigating the topological aspects of these

networks, both at the local and global levels of organization
(Babu et al, 2004; Barabasi and Oltvai, 2004; Alon, 2007).
Experimental (Harbison et al, 2004) and theoretical (Babu
et al, 2004; Han et al, 2004) studies investigating condition-
specific regulatory and protein interaction networks in yeast
have shown that the network re-organizes its topology under
different cellular conditions to efficiently respond to changing
environments. More recently, several studies have identified
the presence of a stratified structure in biological networks
(Ravasz et al, 2002; Ma et al, 2004a; Balazsi et al, 2005; Farkas
et al, 2006; Yu and Gerstein, 2006; Zhao et al, 2006; Cosentino
Lagomarsino et al, 2007; Sales-Pardo et al, 2007; Takemoto and
Oosawa, 2007; Freyre-Gonzalez et al, 2008). In particular,

& 2009 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2009 1

Molecular Systems Biology 5; Article number 294; doi:10.1038/msb.2009.52
Citation: Molecular Systems Biology 5:294
& 2009 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/09
www.molecularsystemsbiology.com

mailto:jothi@mail.nih.gov
mailto:madanm@mrc-lmb.cam.ac.uk
http://dx.doi.org/10.1038/msb.2009.52
http://www.molecularsystemsbiology.com
http://www.molecularsystemsbiology.com


studies on both prokaryotic and eukaryotic regulatory net-
works have discovered the existence of hierarchical network
structures, and have proposed models for their evolution (Ma
et al, 2004a; Balazsi et al, 2005; Farkas et al, 2006; Yu and
Gerstein, 2006; Cosentino Lagomarsino et al, 2007). The
hierarchical organization of complex networks has been
shown to increase adaptability and avoid conflicting con-
straints compared with non-hierarchical networks. This
topological feature allows networks to become larger before
diseconomies of scale set in (Kauffman, 1993).

Although transcriptional regulatory interactions are con-
veniently represented as nodes and edges in a network, it is
important to note that each node in the network represents
several entities (gene, mRNA, and protein) and events
(transcription, translation, degradation, etc) that are com-
pressed in both space and time (see Figure 1). Consequently,
the dynamic nature of these events (synthesis and degradation
of mRNA and protein molecules) and entities (steady-state
levels of mRNA and protein molecules) are expected to affect
the regulatory interactions in the network. Although we have a
good understanding of the topology of regulatory networks,
the dynamics of nodes (TFs and TGs) in these networks and
their role in systems behavior remain largely unexplored. In
this regard, several fundamental questions remain unan-
swered: for example, do TFs in the regulatory network have
distinct dynamic properties (e.g., abundance, half-life, etc)
characterizing their role in a regulatory cascade? More
generally, does the position of a TF in the network structure
relate to its dynamics? Although the richness of this detail is
lost in the network representation, such questions can be

addressed by integrating diverse genomic datasets encapsulat-
ing the dynamics of transcription and translation.

In this study, we investigate the dynamics of the yeast DNA-
binding TFs by integrating diverse genome-scale datasets with
the inherent hierarchical structure in the yeast transcription
regulatory network. Although several studies have proposed
elegant methods to identify hierarchical structures within
directed networks (Ma et al, 2004a, b; Balazsi et al, 2005; Yu
and Gerstein, 2006), they are either not applicable on networks
containing cycles, not scalable, or not always accurate. These
issues are critical and need to be addressed before attempting
to understand the underlying hierarchical structure in the
yeast regulatory network. Hence, as a first step, we present a
new graph-theoretical algorithm called vertex sort, a variant of
the classic topological sort (Cormen et al, 2001), to elucidate
the precise topological ordering of vertices (nodes) in any
directed network—acyclic or cyclic. Applying vertex sort on
the yeast regulatory network revealed the presence of seven
hierarchical levels, which could be grouped into three
mutually exclusive hierarchical layers of TFs: top, core and
bottom. By overlaying diverse genome-scale data on the
inferred hierarchical structure, we show that TFs have static
and dynamic properties that are similar within a layer and
different across layers, indicating that the network topology
and the nodal (TF) dynamics are tightly linked. Our findings
suggest that the interplay between the inherent network
hierarchy and TF dynamics could be critical to (i) making the
regulatory network both robust and adaptable, and (ii)
permitting differential utilization of the same underlying
network in distinct members of a clonal population.

Results

Vertex sort: an approach to infer hierarchical
structure in directed networks

Vertex sort (see Figure 2) first identifies strongly connected
components in a given directed network and collapses them
into super-nodes. A strongly connected component (SCC) is a
sub-network in which, for every pair of vertices (nodes) u and
v in the sub-network, there exists a directed path from u to v,
and from v to u. Collapsing SCCs in a network will result in a
directed acyclic graph (DAG), i.e., a network that is free of
cycles, which is a necessary condition for linear ordering of
nodes in a directed network. Vertex sort then constructs DAGT,
the transpose of DAG, by reversing the direction of edges in the
DAG. Next, the iterative leaf-removal algorithm is applied on
DAG and DAGT to obtain a linear hierarchical ordering of the
nodes for each network. The leaf-removal algorithm is a
bottom-up iterative procedure, which, in each iteration,
removes all the leaf nodes (those with no outgoing edges)
and the edges incident on them from the network. The
algorithm ends when the network is fully decomposed. The
bottom-up ordering of nodes in DAGT (which is equivalent to
the top-down ordering of nodes in DAG) is reversed, which is
then combined with the bottom-up ordering of nodes in DAG
to obtain the final topological ordering of nodes in the network
(see Supplementary information for details of the algorithm).
By using both DAG and DAGT, vertex sort reports a linear
ordering of nodes that contains all feasible solutions rather
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Figure 1 Network representation of a transcriptional regulatory cascade.
Transcription factors (TFs), denoted as nodes in a network (red and green
circles), represent several entities (gene, mRNA, and protein) and events
(transcription, translation, degradation, etc) that are compressed in both space
and time. Although a series of regulatory events can be conveniently represented
as a node in the network, the dynamics of the entities and the biological
processes that make up the node are not captured.
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than reporting just a single solution. Such an ordering permits
nodes to span an entire interval of possible positions in any
feasible ordering. It is important to note that the vertex-sort
algorithm does not count or enumerate all feasible topological

orderings of nodes in a network (a problem that is
computationally intractable (NP-hard)). Rather, it only out-
puts an ordering that contains all feasible solutions. The
differences between vertex sort and existing approaches are
highlighted in Box 1. In particular, unlike the BFS-level
algorithm (Yu and Gerstein, 2006), vertex sort is scalable,
i.e., addition of new nodes or edges to an existing network does
not alter the relative ordering of any two nodes (see Box 1 and
SI for details).

Hierarchical organization of the yeast transcription
network

The transcription regulatory network of the yeast Sacchar-
omyces cerevisiae (Figure 3A) was constructed by assembling
regulatory interactions inferred from biochemical and ChIP-
chip experiments (Svetlov and Cooper, 1995; Horak et al, 2002;
Lee et al, 2002; Harbison et al, 2004; Borneman et al, 2006,
2007). The assembled network contained 13 385 interactions
among 4503 genes, which included 158 DNA-binding TFs and
4369 TGs. We did not consider non-DNA binding proteins such
as chromatin remodeling factors that may also affect gene
expression. Vertex sort on this network revealed the under-
lying hierarchical structure with TFs occupying seven unique
levels (Figure 3; BFS-level algorithm on the same network
outputs an inaccurate hierarchy; see Supplementary informa-
tion and Supplementary Figure S1). This means that the
longest simple directed path (with no repeated TFs) connects
seven TFs with six directed edges. We found that nine TFs are
not connected to any other TF in the network (TFs in the right-
most column in Figure 3C). As these nine TFs are not part of
the inherent hierarchy, we excluded them from further
analysis. The network contained one SCC with 64 TFs, which
were all rightfully grouped together as a single layer by the
algorithm (Figure 3C). By sampling 10 000 random networks
with the same size and degree distribution as the yeast
regulatory network, we estimate the probability that one
would observe a SCC with p64 TFs is o2.8�10�3 (Supple-
mentary Figure S2; see Materials and methods). This suggests
that the size of the SCC in the real yeast transcription network
is smaller than what would be expected by chance for a
random network of the same size and degree distribution.

A large fraction of TFs span more than one level in the
hierarchy (see Figure 3C), which makes it difficult to delineate
hierarchical levels demarcated by unambiguous boundaries.
However, the hierarchal organization of TFs in the network
naturally clusters into three basic non-overlapping layers
centred on the SCC (level 5 in Figure 3C). All the TFs in the SCC
were classified as the core layer. TFs placed in levels above
(levels 6–7) and below (levels 1–4) the core-layer TFs were
classified as top- and bottom-layer TFs, respectively (Figure 3B
and C). Six TFs (PDC2, ARR1, DAT1, RTG1, OTU1, and RPH1),
which span the top, core, and bottom layers, were classified as
belonging to the top layer, as they are not regulated by any
other TF. Similarly, EDS1, which is regulated by a top-layer TF,
was classified as belonging to the bottom layer, as it does not
regulate any other TF in the network. As a result, 25 TFs were
classified as belonging to the top layer, 64 to the core layer, and
59 to the bottom layer. This leaves one TF (PHO2) whose
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Figure 2 The vertex-sort algorithm—an approach to infer hierarchical structure
in directed networks. Vertex sort first transforms the input network into one that is
free of cycles by collapsing the strongly connected components (SCCs), if any,
into super-nodes (orange and blue nodes). All edges within the SCC are
represented with red arrows. Next, an iterative leaf-removal algorithm is applied
on the resulting network and its transpose to obtain the linear ordering of nodes in
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position in the hierarchy is unclear and hence was not con-
sidered for further analysis (see Supplementary information).

In principle, using the above-described strategy, any random
network with exactly one SCC can be converted into a three-
layered hierarchical structure (SCC as core, all TFs that directly
or indirectly regulate the core TFs as top-layer TFs, and those
that are directly or indirectly regulated by core TFs as bottom-
layer TFs). To investigate how often a randomized network
with same size and degree distribution as the yeast network
will contain a three-layer hierarchical structure, we applied the
above described strategy on 10 000 randomly rewired yeast
transcriptional networks and found that 95.16% of the
randomized networks contained exactly one SCC, and thus

effectively a three-layer hierarchical structure. Thus, the
number of layers in yeast network by itself is not unexpected.
We wish to emphasize that the goal of this study was not to
investigate whether or not the yeast regulatory network
contains an N-layer hierarchical structure; rather it was to
assess the enrichment of various static and dynamic properties
of TFs within each inferred layer. We will show in subsequent
sections that it is not just the number of layers or the number of
TFs in each layer that will yield the trends we observe; rather it
is the membership of TFs to specific layers that yields the
observed trends.

The central skeleton connecting the top, core, and the
bottom layers is not strictly linear (Figure 3B, middle and right
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i.e., addition of new nodes or edged to an existing network do not alter the relative ordering of any two nodes. For instance, let u and v be two nodes belonging to
hierarchical layers i and jpi in the original network, respectively. Vertex sort guarantees that the redefined layers i * and j * of nodes u and v after the addition of
new nodes and/or edges to the network will be such that j *pi *.

Box 1 Comparison of the different methods to uncover hierarchical structures in directed networks
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panels). Instead, it appears to form a feed-forward structure in
which the top-layer TFs regulate the core- and the bottom-layer
TFs, and the core-layer TFs regulate the bottom-layer TFs
(right panel in Figure 3B). In addition to such a structure, TFs
within a layer regulate each other—4, 267, and 32 instances of
intra-layer regulatory interactions within the top, core, and
bottom layers, respectively (middle panel in Figure 3B). It is
interesting to note that the number of regulations among core-
layer TFs (267) is greater than all other regulations among the
top and bottom layers, and across all three layers combined
(4þ 32þ 65þ 158¼259), highlighting the complexity of the
core layer. TFs from all the three layers regulate distinct and
overlapping sets of TGs. This feed-forward structure should
not be confused with individual feed-forward loop motifs,
which are discussed in the next section.

In general, it is not uncommon for directed networks to
have a multi-tiered hierarchical structure. Topological ordering
of nodes in any directed acyclic network would show some
kind of hierarchical organization. In the extreme case, if the
network is bipartite, in which all directed edges in the
network are from one set of nodes to the other, the hierarchy
will be a flat two-layered structure. Hence, it was not

surprising that the yeast regulatory network had an inherent
hierarchical structure. The more important question,
however, is whether such a hierarchical organization of TFs
has any appropriate biological meaning. In particular, do
TFs have biologically relevant dynamic properties that
reflect their positions and roles in the organizational structure
of the network? This, in principle, should be true if the network
topology is the result of the underlying biology and, hence, it
should be plausible to shed light on the dynamic aspects of TFs
that help them organize into the observed complex organiza-
tional structure. With this premise, we sought to address these
questions by integrating diverse molecular datasets with the
inferred hierarchical structure.

TFs in different layers within the hierarchical
framework have distinct static properties

First, we examined the local and global topological properties
of TFs in relation to the above-established hierarchy. We
noticed that, on an average (median values are reported), the
TFs in the top layer regulate 54 TGs, the TFs in the core layer
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regulate 144 TGs, and the TFs in the bottom layer regulate 14
TGs (left panel in Figure 4A). The distribution of regulatory
hubs (32 TFs constituting the top 20% of the highly connected
TFs) within the hierarchy is striking (middle panel in
Figure 4A). The hubs are rarely seen at the top of the hierarchy
but are present predominantly in the core layer. In all, 27 out of
the 32 TF hubs are present in the core layer, which accounts for

42% of all TFs in the core layer (Po1.7�10�8; hypergeometric
test). The bottom layer contains no regulatory hubs
(Po3.3�10�8; hypergeometric test). This shows that though
the core layer contains the majority of the regulatory hubs, the
inherent hierarchical structure is such that the top layer TFs,
which are likely to trigger regulatory cascades down the
hierarchy, are not enriched in regulatory hubs.
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included in the study. (D) Percentages of TFs that are essential in each of the three layers of the hierarchy. (E) Distribution of TF conservation levels (presence/absence
of orthologs) across 15 fungal genomes in each of the three layers of the hierarchy. (F) Distribution of number of gene ontology (GO) biological processes a TF is
associated with.
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The 64 TFs in the core layer together regulate or co-regulate
about 87% of all TGs in the network. However, the 59 TFs in
the bottom layer together regulate or co-regulate only about
25% of all TGs in the network. Despite being smaller in
number, the 25 top-layer TFs together regulate or co-regulate
about 35% of all TGs. This indicates that the hierarchy does
not follow a pyramidal structure as suggested previously (Yu
and Gerstein, 2006). Rather, the yeast regulatory network is
organized in such a manner that much of the regulatory
workload is handled by TFs in the core layer, which appear to
have the central role of regulatory signal propagators. It is
interesting to note that this aspect is also reflected in the degree
distribution of TFs within the hierarchical framework (right
panel in Figure 4A). Although the degree distributions of all
TFs as well as those only in the bottom layer resemble power-
law (R2¼0.84 and 0.88, respectively; see Materials and
methods), the degree distributions of core-layer TFs and, to
some extent, top-layer TFs do not seem to follow power-law
(right panel in Figure 4A).

To understand how the TFs within the hierarchical
framework regulate their targets, we examined the patterns
of combinatorial regulation (co-regulation) in the regulatory
network. A TG is said to be co-regulated if it is regulated
by two or more TFs (Balaji et al, 2006a, b). We analyzed
the co-regulatory patterns from a TG’s perspective (Figure 4B).
About 65% of all TGs are co-regulated by two or more
TFs. Co-regulations that involve only core-layer TFs (22.6%)
or those that involve only the core- and the top-layer TFs
(17.7%) occur more often than expected by chance (Po10�3

and Po2.5�10�2, respectively; see Materials and methods).
The percentage of genes that are co-regulated by TFs from
all the three layers (6.8%) is statistically smaller than
what one would expect by chance (Po10�3; see Materials
and methods). Also, co-regulations involving top- and
bottom-layer TFs are statistically under-represented (Po1.5�
10�3; see Materials and methods). In fact, only 0.7% of
all TGs are jointly co-regulated by top- and bottom-layer
TFs. This suggests that the pecking order of TFs in the
hierarchy is well-defined that co-regulations involving
top- and bottom-layers are generally discouraged. This
is a clear indication that there is very little joint regulation
of TGs by the top- and bottom-layer TFs, which is what
one expects to see in any hierarchical structure (Kauffman,
1993).

Our observation that the central skeleton of the hierarchy
appears to have a structure similar to the feed-forward
loop (FFL) motif (right panel in Figure 3B) prompted us to
investigate the occurrence of FFLs within this framework. A
FFL motif is composed of a ‘general’ TF x regulating a second
‘specific’ TF y, which jointly regulate a TG z (Alon, 2007).
An analysis of the distribution of FFL motifs within the
hierarchical framework revealed that about 94% of all FFL
motifs involve only the core- and/or top-layer TFs (top panel in
Figure 4C). Given that FFL motifs, isolated and overlapping/
nested, could help relay persistent signals and may filter out
short-term fluctuations in incoming signals (Ghosh et al, 2005;
Alon, 2007; Ratushny et al, 2008; Shahrezaei et al, 2008a), it is
consistent that FFL motifs are found predominantly at the top
of the hierarchy, an attribute that may help filter noise before it
can reach deep into the hierarchy. It should be noted that FFLs

can serve very different functions depending on (i) which
edges in the FFL represent activation or repression (up or
downregulation, respectively) (ii) the combinatorial integra-
tion (sum, max, AND, OR, etc) of the signals attributed to two
or more TFs (edges) regulating a TG, and (iii) whether the FFLs
are isolated or overlapping with other FFLs (e.g., cascaded,
have feedback loops around and between their nodes, etc). It
remains to be investigated if the roles of nested/overlapping
FFLs would be any different from the isolated FFLs and how
they may affect the signal processing capabilities of the
network.

The specific TF in 93% of all FFLs is a core-layer TF
(Po6�10�4; see Materials and methods), indicating that the
core-layer TFs have a central role in modulating the expression
of almost all target genes in the network. Furthermore, in 73%
of all FFLs, core-layer TFs serve as both the general and the
specific TF. Of the instances in which all the three nodes in
a FFL were a TF, we found that 8.3% contain the general TF as
a top-layer TF, the specific TFas a core-layer TF, and the TG as a
bottom-layer TF (bottom panel in Figure 4C). Although
there are no instances of FFLs with all three nodes solely
from the top or bottom layers, approximately 50% of all such
FFLs (where all nodes are TFs) contain TFs solely from the
core layer. This suggests that although the central skeleton of
the hierarchical organization of TFs has a feed-forward
structure (right panel in Figure 3B), the actual FFLs in the
network tend to be initiated or terminated at different layers of
the hierarchy.

To assess the importance and the extent of evolutionary
conservation of TFs in relation to the hierarchical structure,
we analyzed gene essentiality information and evolutionary
conservation of TFs across 15 completely sequenced
fungal genomes. We found that there is a strong positive
correlation (R2¼0.96) between gene essentiality and how high
the TF is in the hierarchy (Figure 4D). This trend remained the
same even when we examined the quantitative fitness data
from a recent yeast gene deletion study (Steinmetz et al,
2002) that reported fitness information for non-essential
genes across several different growth conditions (Supplemen-
tary Figure S3; see Materials and methods). We also found
that the TFs in the top and core layers, on an average, are
more conserved compared with those in the bottom layer
(Po3.9�10�2; Wilcoxon’s rank-sum test) (Figure 4E). As
conservation is likely to be a result of functional constraints,
we hypothesized that the top- and core-layer TFs might be
associated with many different biological processes. Indeed,
we found that top- and core-layer TFs, on an average
(median values are reported), are associated with four and
three Gene Ontology biological processes, respectively, com-
pared with two processes for bottom-layer TFs (Po1.1�10�4;
Wilcoxon’s rank-sum test) (Figure 4F). Our observation
that the top- and core-layer TFs are functionally versatile
and highly conserved are consistent with the results from a
recent study which showed that the dynamics of gene loss
are highly constrained by the functional properties and
interacting partners of genes (Wapinski et al, 2007). All of
the above observations collectively suggest that the TFs in the
top and core layers are more likely to be important for the
successful survival and adaptation of the organism to its
environment.
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TFs in different layers within the hierarchical
framework have distinct dynamic properties

We next investigated whether TFs within each hierarchical layer
have different dynamic properties in terms of their abundance
and degradation rates. Integrating information on transcript
abundance (Holstege et al, 1998) and half-life (Wang et al, 2002)
with the hierarchical structure revealed that mRNA molecules
coding for core-layer TFs are relatively more abundant than that
of top- and bottom-layer TFs (Figure 5A). The abundance of
transcripts coding for core-layer TFs is statistically higher
than that coding for bottom-layer TFs (Po10�3; Wilcoxon’s

rank-sum test), but not top-layer TFs (Po0.136; Wilcoxon’s
rank-sum test). Transcripts of TFs from all three layers have
similar half-life (Figure 5B). As transcript degradation rates are
comparable, this suggested that the core-layer TFs are likely to
be transcribed at a higher rate than the top- or bottom-layer TFs.
We then investigated if the availability of TFs may be regulated
at the protein level.

Overlaying protein abundance data (Newman et al, 2006) on
the hierarchical structure revealed a very striking trend
wherein the top-layer TFs were significantly more abundant
on an average (median values are reported; 189.5 copies per
cell) when compared with those in the core (approximately
80.75 copies per cell) and the bottom layers (approximately 72
copies per cell; Po3.9�10�2; Wilcoxon’s rank-sum test)
(Figure 5C). We investigated if translation efficiency, as
measured by tRNA Adaptation Index (tAI) (Man and Pilpel,
2007), could have a role in the observed differences in the
abundance of TFs. We found that the tAI was comparable
between the TFs from different layers suggesting that
degradation rather than synthesis might be the contributing
factor for the observed differences in protein abundance
(Supplementary Figure S4). Indeed an analysis of protein half-
life data (Belle et al, 2006) showed that the TFs in the top layer
had a much longer half-life (median value of 42 min) than
those in the core (20 min) and the bottom layers (17 min)
(Po4.5�10�2; Wilcoxon’s rank-sum test) (Figure 5D). This
suggested that the observed slower rate of protein degradation
of top-layer TFs is likely to be the reason why they are more
abundant than the TFs from the other two layers.

As protein abundance has been found to be correlated with
intrinsic noise (i.e., variation due to the inherent stochasticity
of biochemical processes such as transcription and transla-
tion) in expression levels (Bar-Even et al, 2006; Newman et al,
2006) in a clonal population of cells, we investigated the
relationship, if any, between the intrinsic noise of TFs and the
TFs’ position in the hierarchy. In particular, we examined
whether the TFs within different hierarchical layers show
more or less intrinsic stochasticity in their protein expression
levels (relative to TFs in other layers and not to the entire
proteome) among individuals in a population of genetically
identical cells. To this end, we gathered data on intrinsic noise
in protein levels in yeast cells from a recent study (Newman
et al, 2006). Integrating information on intrinsic protein noise,
measured as the distance from median coefficient of variation
(DM; see Materials and methods), with the hierarchical
structure revealed that the TFs in the top layer have relatively
much larger intrinsic variation in protein abundance when
compared with the TFs in the core and the bottom layers
(Po3.8�10�2; Wilcoxon’s rank-sum test) (Figure 5F).
Although our observation that the ‘more abundant’ top-layer
TFs are intrinsically noisier may seem to be contradictory (as
they are expected to be less noisy because abundance
generally correlates inversely with noise), we wish to
emphasize an important point here. The median abundance
for the TFs considered in our study is 81 molecules per cell,
whereas the median abundance of all proteins is 185
molecules per cell. Thus, even though we report that the top-
layer TFs are highly abundant, this is only relative to the core-
and bottom-layer TFs, and not compared with the set of all
proteins in the genome. In other words, the top-layer TFs are
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Figure 5 Dynamic properties of transcription factors (TFs) within the
hierarchical framework. Distribution of TF values in each of the three layers of
the inferred hierarchy for transcript abundance (mRNA molecules per cell) (A),
transcript half-life (min) (B), protein abundance (protein molecules per cell) (C),
protein half-life (min) (D), and noise in protein abundance (variability in protein
levels in a cell population) (F). (E) Percentages of TFs in each of the three
hierarchical layers containing a TATA-box. The expected percentage is shown as
a broken line (22%). The y axis in (F) denotes protein noise measured as the
distance from median co-efficient of variation of all proteins (DM; see Materials
and methods).
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relatively less abundant and noisier compared with all the set
of all proteins in the genome.

An important source of intrinsic stochasticity in gene
expression is linked to the presence of TATA-box in the
promoter regions of genes. The presence of a TATA-box has
been shown to facilitate multiple rounds of transcription
initiation, contributing to the variation in the expression levels
of mRNA and/or protein (Blake et al, 2003; Raser and O’Shea,
2004; Raj and van Oudenaarden, 2008). Indeed, it has been
shown that point mutations to the TATA-box result in drastic
noise reduction (Blake et al, 2006) and that genes with and
without a TATA-box show a difference in expression diver-
gence, mutational variance and their regulation (Tirosh et al,
2006; Landry et al, 2007; Heath et al, 2008). We therefore
obtained the set of genes with a predicted TATA-box (Basehoar
et al, 2004) and investigated the occurrence of a TATA-box in
promoter regions of TFs in different hierarchical layers. Our
analysis revealed that 8% of the top-layer TFs, 30% of the core-
layer TFs, and 20% of the bottom-layer TFs contain a predicted
TATA-box (Figure 5E), indicating that the core-layer TFs tend
to be noisier (Po0.028; hypergeometric test) than the top-
layer TFs at the transcriptional level. However, as the top-layer
TFs are noisier than the core-layer TFs at the protein level
(Figure 5F), these results suggest one of the following
possibilities: (i) transcriptional noise is modulated (i.e.,
amplified for top-layer TFs and buffered for core- and
bottom-layer TFs) at the translational level (Blake et al,
2003), (ii) the genes with TATA-box may still be noisy at the
protein level, but such TFs may be expressed in a condition-
specific manner and may not have been expressed in the
experimental conditions in which protein noise was measured
by Newman et al (2006), (iii) the predicted TATA-box upstream
of TFs may have mutations that make them slightly different
from the consensus TATA-box sequence, and hence these TFs
may not show the previously reported correlation between
protein noise and the ‘presence’ of a TATA-box (Blake et al,
2006), or (iv) extrinsic factors might contribute to the
increased variability in protein levels of top-layer TFs.

Although we have investigated the possible influence of
intrinsic noise on the expression dynamics of these TFs, it
should be noted that noise could be influenced by both
intrinsic and extrinsic factors such as fluctuations in the local
environment, amounts or states of other cellular components
indirectly leading to variation in the expression of a particular
gene (Swain et al, 2002; Paulsson, 2004; Raser and O’Shea,
2005). Indeed, it has been suggested recently that both the
timescales of extrinsic fluctuations and their non-specificity
substantially affect the function and performance of biochem-
ical networks (Shahrezaei et al, 2008a). Therefore, future
systematic genome-scale studies aimed at investigating the
effect of extrinsic noise will be important for decoupling the
influence of intrinsic and extrinsic noise on much larger
regulatory networks and its influence on systems behavior.

To ensure that the trends we observed are not expected by
chance, we investigated how often the observed trends can
also be seen if a different hierarchy inference procedure was
used. To this end, we analyzed the static and dynamic
properties of the TFs that were grouped according to the
BFS-level algorithm. Although the hierarchical structures
returned by vertex-sort and the BFS-level algorithms are

different, a significant overlap of TFs in the corresponding
layers was observed (see Supplementary Table S1). This
analysis showed that when it comes to static properties, the
trends were comparable to that obtained using vertex sort
algorithm. However, when it comes to dynamic properties, the
outcomes were very different. In particular, the distribution of
protein abundance, half-lives, and noise in protein expression
and the presence of TATA-box at the promoter region of top
layer TFs, as inferred by BFS-level algorithm, were not
statistically different compared with the core and/or bottom
layer TFs (see Supplementary Figure S5). This is because the
top-layer TFs, as defined by the vertex-sort algorithm, is
inaccurately classified as belonging to the middle layer in BFS-
level hierarchy, thereby resulting in no statistically significant
difference of these properties between the layers (see
Supplementary information and Supplementary Figure S1).
This direct comparison of groupings obtained from vertex-sort
and BFS-level algorithms shows that it is not just the number of
layers or the number of TFs in each layer that will yield the
trends we observe for protein abundance, half-life, and noise,
rather it is the membership of TFs to specific layers that yields
the observed trends.

Discussion

Recent studies have largely focused on understanding how
topological properties and network organization characterize
complex biological systems. However, the dynamic nature of
the nodes and its role in systems behavior on a genomic-scale
has remained unclear. In this study, we used a new method
called vertex sort to classify DNA-binding TFs in the yeast
regulatory network into seven hierarchical levels, which
naturally clustered into three mutually exclusive hierarchical
layers that were named as top, core, and bottom. By
integrating several genome-scale datasets onto the inferred
hierarchy, we found that TFs have static and dynamic
properties that are similar within a layer and different across
layers. These findings indicate that the network topology and
the nodal (TF) dynamics are tightly linked.

We did not find the inherent hierarchy to be strictly linear or
pyramidal as previously suggested (Yu and Gerstein, 2006).
Instead, we found that the central skeleton appears to have a
feed-forward structure (Figure 3B). The core layer is enriched
in TFs that regulate many genes and the bottom layer contains
TFs that regulate few genes (Figure 4A), further suggesting
that the hierarchy is non-pyramidal. In addition, the fact that
the core-layer TFs regulate or co-regulate 87% of all target
genes, and are involved in over 90% of all feed-forward
loops suggest that core-layer TFs are the power-centers of
the regulatory network, which is consistent with previous
observations (Maslov and Sneppen, 2005; Farkas et al, 2006).
Our observation of a multi-level hierarchy with a strongly
connected component (core-layer; SCC) is consistent with
what has been discussed recently by Bar-Yam et al (2009),
where they suggested that the complexity of the transcriptional
network in cellular systems is somewhere in between a strictly
hierarchical ‘autocratic’ structure (with multiple hierarchical
levels and no SCC) and a highly interconnected ‘democratic’
structure (in which a few master-regulator TFs regulate the set
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of other TFs that mutually regulate each other, effectively
forming a two-level hierarchy).

Overlaying large-scale genomic datasets on transcript
abundance, transcript half-life, translation efficiency, protein
abundance, protein half-lives, and protein and transcription
noise on the inferred hierarchical structure showed that the
dynamics of TFs in the regulatory network is not random.
Rather, we find that TFs in distinct hierarchical layers of the
network have similar dynamic properties, indicating that the
network topology and the nodal (TF) dynamics at the mRNA
and the protein level are tightly linked. Although the presence
of a hierarchical structure in the yeast regulatory network is of
interest in itself, our finding that the TFs possess inherent
characteristics that encapsulate their dynamic roles in systems
behavior is noteworthy and unexpected.

Our observations that transcript half-lives of TFs from the
three layers are comparable (Figure 5B), but the top-layer TFs
are present in relatively higher abundance at the protein
level (Figure 5C) and have a much longer protein half-life
(Figure 5E) when compared with that of core- and
bottom-layer TFs suggest that post-translational regulation
has an important role in ensuring the availability of right
amount of each TF within the cell. The need for the presence of
top-layer TFs to relay faithful signals down the transcriptional
cascade and their involvement in many biological processes
(Figure 4F) could explain why top-layer TFs need to be
relatively abundant than the core- and bottom-layer TFs.
These findings are consistent with what has been proposed
by Farkas et al (2006) who suggested a model in which
regulatory cascades originating from distinct fractions of the
regulatory network control robust integrated responses to
complex stimuli.

The observation that top-layer TFs show a relatively higher
variability in protein abundance between individuals in a
clonal population of cells (Figure 5F) suggests that such a
behavior may confer a selective advantage to individuals, as
this permits at least some members in a population to respond
effectively to changing conditions by triggering relevant
transcriptional cascades (Spudich and Koshland, 1976; McA-
dams and Arkin, 1999; Rao et al, 2002; Kaern et al, 2005; Raser
and O’Shea, 2005; Blake et al, 2006; Ramsey et al, 2006;
Samoilov et al, 2006; Acar et al, 2008; Heath et al, 2008; Lopez-
Maury et al, 2008; Raj and van Oudenaarden, 2008; Shahrezaei
and Swain, 2008b). For instance, ABF1, which is a multi-
functional TF present in the top layer, is an abundant protein
whose levels are noisy in a clonal population of cells. However,
the activity of ABF1 depends on the availability of its co-
activators (e.g., CDC6) and on its phosphorylation state, which
is known to be regulated by several kinases (e.g., casein kinase
2) or phosphatases (Silve et al, 1992; Upton et al, 1995). The
relatively higher noise in the abundance of ABF1 might ensure
that, at least, some members in a population would respond
rapidly to changing environments (i.e., when co-activators or
kinases are activated in response to the altered external
stimulus). We propose that high variability in the expression of
key TFs, whose TGs might contribute to phenotypic variation,
might be a general strategy to facilitate adaptation to diverse
environments (see Figure 6 for a model). This does not exclude
the possibility that variation in the protein expression levels of
specific target genes (independent of the variation in the levels

of their regulating TFs) might dictate cell-fate outcomes in a
post-transcriptional or post-translational manner. Hence, a
detailed investigation that integrates multiple types of net-
works with data on cell-to-cell variation in the levels of
transcripts and proteins might elucidate the contribution from
TF-dependent and TF-independent modes for adaptability of
cells to changing environments.

Further, our observation that the protein levels of the core-
layer TFs (the power-centers) and bottom-layer TFs are
inherently tightly regulated suggests that such a tight regula-
tion, along with other regulatory mechanisms such as post-
translational modifications or physical interactions with other
proteins, might act as a filter to minimize noise propagation
down the hierarchy due to any ‘inadvertently’ triggered
response. In other words, tight regulation of the core- and
bottom-layer TFs by rapid degradation (i.e., shorter protein
half-life; Figure 5D) would ensure that such TFs are present
only in low levels under normal conditions. Their presence in
relatively lower levels might facilitate minimization of noise
propagation because sufficient levels of TFs may not be
present to trigger an appropriate response when transient
signals ‘inadvertently’ activate them. Therefore, we suggest
that the tight regulation of protein levels of the core- and
bottom-level TFs might ensure fidelity and robustness in a
regulatory cascade.

Taken together, our findings suggest that (i) the higher
variability in abundance of top-layer TFs compared with core-
and bottom-layer TFs in distinct members of a clonal cell
population might permit differential utilization of the same
underlying network (see Figure 6) and (ii) the tight regulation
of core- and bottom-layer TFs might contribute to fidelity in
gene expression. Thus, the interplay between the dynamics of
individual nodes and the topology of the regulatory network
would make the underlying network robust and permit at least
some members in a population to effectively adapt to (or
survive in) changing environments.

Our findings have implications in synthetic biology experi-
ments aimed at engineering gene regulatory circuits (Becskei
and Serrano, 2000; Elowitz and Leibler, 2000; Gardner et al,
2000). In particular, the dynamics of TFs in terms of their
abundance, half-life, and noise cannot be ignored as modulat-
ing these attributes could affect the outcome of a regulatory
cascade. The proposed conceptual framework (see Figure 6)
from our findings serves as a general model and also has
important implications for a number of apparently different
but related phenomena as outlined below.

Bacterial persistence or adaptive resistance
This is a phenomenon where a fraction of a genetically
homogeneous microbial population survives upon exposure
to stress, such as antibiotics (Balaban et al, 2004; Levin,
2004; Dhar and McKinney, 2007). Although key regulatory
proteins, which facilitate random phenotypic switching, have
been implicated in this phenomenon (Dhar and McKinney,
2007), we suggest that the altered dynamics and stochastic
expression of certain regulatory proteins may alter the
susceptibility of an individual by facilitating differential
utilization of the underlying network efficiently (Figure 6).
This might permit alteration of the phenotype (i.e., the
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switching in susceptibility states) in an otherwise genetically
identical population of cells. Indeed, this suggestion is
supported by recent studies which have implicated TFs such

as PhoU (Li and Zhang, 2007) and the two component signal
transduction system DpiAB (Miller et al, 2004) in this
phenomenon.

Clonal cell population
experiencing stimulus 1

A B

Stimulus 1 response pathway
Stimulus 2 response pathway

Cell-to-cell variability in the expression of top-layer TFs 
permits differential sampling of the same underlying network by distinct 

members of a genetically identical population of cells.

Stimulus 2Stimulus 1

Non-genetic cell-to-cell variability and dynamics in the expression of key TFs might
confer selective advantage, as this permits at least some members in a clonal cell 

population to respond to (or survive in) changing conditions.

Underlying transcription regulatory network

Change in stimulusC

Figure 6 A schematic model describing the conceptual framework of differential utilization of the same underlying regulatory network by distinct members of a
genetically identical cell population. (A) A toy regulatory network showing two regulatory pathways, which will be used to respond to two specific extracellular stimuli. The
red, green, and blue nodes in the network represent transcription factors (TFs), symbolically representing the inferred top-, core-, and bottom-layer TFs in the hierarchical
network, respectively. (B) Members of a clonal cell population responding to stimulus 1 (top panel). The variability in expression of top-layer TFs (shown as nodes in
varying shades of red; middle panel) permits differential sampling of the same underlying network by distinct members of a genetically identical population of cells. TFs
colored in gray are not expressed at necessary levels, and are shown as inactive nodes. Edges originating from inactive TFs are inactive (shown in gray). A noisy master-
regulator TF at the top of the hierarchy would mean that only a subset of a population, in which this TF is expressed at necessary levels, will have this TF in active form.
An inactive TF at the top of a hierarchical regulatory cascade will result in the non-expression per inactivation of all downstream TFs and TGs dependent on this TF.
Members of a clonal population whose regulatory pathway for a specific extracellular stimulus is active will initiate an effective response when that stimulus is
encountered. And, those members in whom this regulatory pathway is inactive will be unable to mount an effective response. Though all members in the population are
sampling the part of the network necessary to respond to stimulus 1, only a few members (shown as purple and orange cells; bottom panel) are sampling (or poised to
sample) the part of the network necessary to respond to stimulus 2. (C) A change in stimulus (from stimulus 1 to 2) causes only those cells that have an active regulatory
response pathway for stimulus 2 to effectively respond and survive, whereas the others may mount a late response or will not survive. Alternatively, low expression of top-
layer TFs might facilitate cell survival if the pathway regulated by such TFs leads to cell death (e.g., apoptosis). Thus, the presence of noisy TFs at the top of the
hierarchical regulatory cascade might confer a selective advantage as this permits at least some members in a clonal population to respond to changing conditions.
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Differential cell-fate outcome in response to the same
uniform stimulus
Factional survival or cell-death in clonal cell populations upon
drug treatment is a well-known phenomenon in certain
diseases such as cancer. Two important studies recently
showed that this could be achieved by variability in the
expression dynamics of key regulatory proteins that determine
cell fate such as death or survival. In one study (Cohen et al,
2008), it was shown that the dynamics of the regulatory
proteins, which either dictate cell death or survival, varied
widely between individual cancer cells. In the other study
(Spencer et al, 2009), it was shown that naturally occurring
differences in the levels or states of proteins regulating
apoptosis are the primary causes of cell-to-cell variability in
the timing and probability of death in individual members of
the population upon induction of apoptosis. We suggest that
this dynamic variability in expression level of key regulatory
proteins might permit differential sampling (i.e., the survival
network or the apoptotic network) of the same underlying
regulatory network (governing all cells) by different members
in a clonal population (see Figure 6). This differential network
utilization might result in divergent cell-fate outcomes among
different individuals in an otherwise identical cell population.

Phenotypic variability in fluctuating environments
When organisms experience fluctuating environments, indi-
viduals of the same population may exhibit very different
phenotypes. This may be achieved either by sensing followed
by response or through the generation of diversity by random
switching between different states (Kussell and Leibler, 2005;
Acar et al, 2008). Although variation in expression levels of
certain regulatory proteins has been implicated in this
phenomenon, we suggest that such variation in expression
levels may allow stochastic switching between phenotypes by
poising certain individuals or permitting the sampling of
relevant parts of the same underlying network (see Figure 6).
This suggestion is supported by recent studies. Upon fluctuat-
ing nutrient starvation, some yeast cells sporulated, whereas
others underwent delayed sporulation (Nachman et al, 2007).
This variability was shown to be governed by the variation in
the production rate of the meiotic master regulator Ime1p and
its gradual increase over time. In another set of studies, by
analyzing the probabilistic and transient differentiation of
Bacillus subtilis cells into the state of competence (Iber, 2006;
Suel et al, 2006, 2007; Maamar et al, 2007), it was shown that
variation in the expression level of ComK determines the
frequency of the differentiation events. The increased varia-
bility in expression level of these key regulatory proteins, in
turn, might permit different individuals in the same population
to activate relevant parts (i.e., the sporulation sub-network or
the competence sub-network) of the same underlying global
transcriptional network to exhibit phenotypic variability (i.e.,
to sporulate or not; to exhibit a competence or vegetative
state).

Cellular differentiation and development
During the course of stem-cell differentiation and develop-
ment, it has been well established that maintaining the right

balance of combinations of key TFs and appropriate signaling
environment in space and time dictates (a) lineage specifica-
tion of the progenitor cells (e.g., myeloid lineage commitment
from hematopoietic stem cells; see (Iwasaki and Akashi,
2007)) and (b) formation of distinct spatial patterns of cell-
types during organ development (e.g., cell fate specification in
neural development; see (Guillemot, 2007)). In this context,
the inherent dynamics of TFs, such as cell-to-cell variation in
expression levels, might have an important role in develop-
ment, stem cell maintenence and differentiation (Arias and
Hayward, 2006; Huang et al, 2007; Silva and Smith, 2008).
Although dedicated circuits that filter noise in expression may
be required for certain processes to be robust and reproducible
(Arias and Hayward, 2006; Barkai and Shilo, 2007), we suggest
that distinct TF dynamics, as dictated by the position in the
hierarchy of the transriptional network, might provide the
flexibility for individuals in a population to initiate distinct
response and sample distinct networks that permit lineage
commitment when the appropriate signaling environment is
experienced (see Figure 6). The implications of our findings
assume significance particularly in light of the recent
discovery that transcriptome-wide noise of specific TFs
controls lineage choice during stem cell differentiation (Chang
et al, 2008; Kalmar et al, 2009)

In conclusion, investigating the dynamics (e.g., cell-to-cell
variability in abundance, half-life of transcripts and proteins,
etc) of individual nodes in relation to the network organization
in other biological networks such as the protein interaction
network, kinase-substrate regulatory network, metabolic net-
work, and understanding their impact on each other will be
important to obtain a better understanding of how (i) cells
adapt to changing environments, (ii) different phenotypic
outcomes are mediated in clonal cell populations and (iii)
mutations that disrupt the dynamics of key regulatory proteins
may influence disease conditions.

Materials and methods

Vertex-sort algorithm

Given a directed network, vertex sort first identifies SCCs and collapses
them into super-nodes. It then constructs DAGT, the transpose of DAG,
by reversing the direction of edges in the DAG. Next, it applies the
iterative leaf-removal algorithm on DAG and DAGT to obtain linear
hierarchical ordering of the nodes in each network. The leaf-removal
algorithm is a bottom-up iterative procedure, which, in each iteration,
removes all the leaf nodes (those with no out-going edges) and the
edges incident on them from the network. Finally, after the network is
fully decomposed, the (top-down) ordering of nodes in DAGT is
reversed, which is then combined with the (bottom-up) ordering of
nodes in DAG to obtain the final topological order of nodes in the
network (see Figure 2, Box 1, and Supplementary information for
details and the pseudocode).

Datasets

Yeast transcription network
The yeast transcription regulatory network was assembled from
biochemical and ChIP-chip experiments (Svetlov and Cooper, 1995;
Horak et al, 2002; Lee et al, 2002; Harbison et al, 2004; Borneman et al,
2006, 2007). The resulting network had 13 385 regulatory interactions
among 4503 genes. This includes 158 DNA-binding TFs and 4369 TGs.
The top 20% of the highly connected TFs (32 TFs that regulate 162 or
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more TGs) were considered as regulatory hubs. A TG is said to be
combinatorially regulated if it is regulated by two or more TFs. About
65% of all target genes are regulated by two or more TFs.

Essentiality, conservation, and gene ontology analysis
The list of essential yeast genes was obtained from the Saccharomyces
genome database (http://www.yeastgenome.org). In all, 9 out of the
158 TFs were found to be essential. Evolutionary conservation of yeast
TFs across 15 different fungal genomes was assessed by computing the
percentage of genomes in which a TF is conserved. Bi-directional
BLAST best-hits were used to determine whether a TF is conserved in
one of the other fungal genomes. The list of Gene Ontology biological
processes in which a TF is involved was obtained from the
Saccharomyces genome database.

Condition-specific quantitative fitness
Fitness information for non-essential genes across different media was
obtained from the yeast gene deletion study by Steinmetz et al (2002).
We considered five media, representing major growth conditions of
yeast (YPD—1% Bacto-peptone, 2% yeast extract, and 2% glucose;
YPDGE—0.1% glucose, 3% glycerol, and 2% ethanol; YPG—3%
glycerol; YPE—2% ethanol; and YPL—2% lactate), for which a
deletion screen was carried out twice for reproducibility purposes. The
quantitative fitness of each deletion strain was computed by averaging
the fitness values from the two time-courses. In cases where strain
fitness could only be measured in one time-course, we used that
measurement directly. Using an approach similar to that of Gu et al
(2003), we classified the genes into four fitness categories based on
their quantitative fitness value f: lethal (f¼0), strong negative effect
(0ofo0.8), moderate negative effect (0.8pfp0.95), weak or no effect
(0.95ofp1.05), and positive effect (f41.05).

Transcript abundance and half-life
Information on transcript abundance and transcript half-life was
obtained from previously published studies (Holstege et al, 1998;
Wang et al, 2002). Transcript abundances for yeast grown in YPD were
determined by using an Affymetrix high-density oligonucleotide array
and transcript half-lives were determined by monitoring transcript
levels over several minutes after inhibiting transcription by using a
temperature sensitive RNA polymerase rpb1-1 mutant S. cerevisiae
strain.

Protein abundance, half-life and noise
Protein abundance and noise data was obtained from a recent study by
Newman et al (2006). Protein half-life data was obtained from Belle
et al (2006). Estimates of the endogenous protein expression levels
during log-phase were obtained by tagging every yeast protein with
GFP and measuring the intensity. Protein half-lives were determined
by first inhibiting protein synthesis by the addition of cyclohexamide
and by monitoring the abundance of each tagged protein in the yeast
genome as a function of time. Measurements of noise in protein levels
in a population of cells were obtained in a single-cell proteomics study
that coupled high-throughput flow cytometry and a library of GFP
tagged yeast strains. Noise was calculated as the ratio of the standard
deviation to its mean abundance. For every protein, DM represents the
difference between the noise value of that protein and the median over
all proteins. Lower values represent less noise in protein abundance.
The data on genes with a predicted TATA-box was obtained from
Basehoar et al (2004).

Statistical significance

Combinatorial regulations and FFL motifs
To assess whether the observed characteristics are not a direct result of
the underlying network structure, we carried out the same set of
analyses on 10 000 random trials. In each trial, the TFs were randomly
classified into three groups (top, core and bottom) of sizes identical to

that seen in the real data. The results were normalized with respect to
the number of TFs in each layer. The P-value was calculated as the
fraction of times (over 10 000 trials) a value observed in the random
trial is, at least, as much as that observed for the real data. Bonferroni
correction was applied to the obtained P-values as multiple hypotheses
were tested.

Comparison of distributions
The Wilcoxon’s rank-sum test, also known as Mann–Whitney U test,
was used to test if two samples of observations came from the same
distribution.

Enrichment analysis
The hypergeometric test was used to assess the significance of whether
a given sample of observations is enriched for a particular attribute.

Assessment of fits to distributions
Attempts were made to fit several linear and non-linear equations to
the data points, and the distribution that fits the data points the best
(measured as the one with the highest coefficients of variation, R2) is
reported.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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