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,butions  and compositional features of exons, introns and intergenic 
regions. Distinct sets of model  parameters are derived to account for the 
many  substantial differences in gene density and  structure observed  in 
distinct C + G compositional regions of the human genome. In addition, 
new  models of the  donor and acceptor  splice signals are described which 
capture potentially  important dependencies between signal positions. The 
model is applied to the problem of gene identification in a computer  pro- 
gram, GENSCAN,  which identifies complete identis4Tc 2.0381 0 eon cTj-8is composit 0 0 10.5 2ch applied disttial genes in 

a sequence, to deal with partial as 
well as complete genes, and to predict consistent sets of genes occurring 
on either  or  both DNA strands. GENSCAV is shown to have substan- 
tially higher accuracy  than existing methods when tested on standardized 
sets of human  and vertebrate genes, with 73 to 80% of exons identified 
exactly. The program  is also capable of indicating fairly accurately the re- 
liability of each  predicted exon. Consistently high Iyvels of accuracy are 
observed for sequences of differing C i G content and for distinct groups 
of vertebrates. 

1997 Academic Press Limited 
Keywords: exon prediction; gene  identification; coding sequence; 

'Corresponding nufhm probabilistic  model; splice signal 

Introduction 

The problem of identifying genes in genomic 
DNA  sequences  by computational methods  has at- 
tracted considerable research attention in recent 
years. From  one point of view, the problem is clo- 
sely related  to  the  fundamental  biochemical  issues 
of specifying the precise sequence  determinants of 
transcription, translation and RNA splicing. On the 
other  hand, with the recent shift in the  emphasis of 
the Human Genome  Project from  physical map- 
ping to intensive sequencing, the  problem  has 
taken on significant practical importance, and com- 
puter  software for exon prediction  is  routinely 
used by genome sequencing laboratories  (in con- 

Abbreviations used: Sn,  sensitivity; Sp, specificity; CC. 
correlation coefficient; AC, approximate  corrclation; ME, 
missed exons; WE, wrong exons; snRNP, small nuclear 
ribon~~clcoprotcin particle; snRNA, small nuclear RNA; 
WMM, weight nlatris mcxlcl; WAM, weight array 
model; MDD, nusinla1 dependence dcxmnqxwition. 
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junction with other methods) to help identify genes 
in newly sequenced  regions. 

Many early approaches to the problem  focused 
on prediction of individual functional elements, 
e.g. promoters, splice sites, coding regions, in iso- 
lation (reviewed  by  Gelfand, 1995). More recently, 
a number of approaches have been developed 
which integrate multiple fqes  of information in- 
cluding splice signal sensors, compositional prop- 
erties of coding and noModing DNA and  in  some . 
cases database homology searching in order to pre- 
dict entire gene structurrs (sets of spliceable exons) 
in genomic  sequences. Some examples of such  pro- 
grams include:. FGEXEH (Solovyev et d., 1993), 
GENMARK  (Borodovsky & McLninch, 1993), Gene- 
ID (Guig6 et a?., 1992), Genie (Kulp et nl., 1996), .: 
GeneParser  (Snyder Ei Stormo, 1995), and GRAIL 
I1 (Xu et nl., 1994). Fickett (1996) offers an up-to- 
date introduction to sene hd ing  by computer and 
points up son~e of the strengths and  weduw+cs of 
currently available nwtkxls. Two important linli- 
tations notcd are that tht. nwjority of current algor- 
ithms assume that the hput sequence contains 
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exactly o w  complcte gc'w (so that, \vhcn  prcscntcd 
with a sequc~~ce cont'3ining a prtial gcnc or  mul- 
tipie gcncs, the results pncr.~lly do not makc 
sense); and  tllnt accurx!. nw,~~rc.d by incicpcn- 
dent control scts map b~ consicierabiy 1o\h7cr than 
was originally thought. The issue of the predictive 
accuracy of such  methods has recently  been ad- 
dressed  tluough an exhaustive comparison of 
available methods  using a Iarge set of vertebrate 
gene sequences (Burset & Guigb,  1996). The 
authors conclude that the predictive accuracy of all 
such  programs  remains rather low, with  less than 
50% of exons identified exactly  by  most programs. 
Thus, development of new  methods (and/or im- 
provement of existing methods) continues to be 
important. 

Here,  we  introduce a general probabilistic model 
for  the (gene) .structure of human  genomic se- 
quences and  describe the application of this model 
to the problem of gene prediction in a program 
called GENSCAN. Our goal in desi,oning the geno- 
mic  sequence model was to capture the  general 
and specific compositional properties of the dis- 
tinct functional units of a eukaryotic gene:  exon, in- 
tron, splice site, promoter,  etc.  Emphasis was 
placed on  those features which are recognized by 
the general transcriptional, splicing and transla- 
tional  machinery ~ h i c h  process most or all protein 
coding genes, rather than specialized signals re- 
lated to  tTanscription or (alternative) splicing of 
particular  genes or gene  families. Thus, for 
example, we incIudy the TATA  box and cap site 
which  are  present iq most eukaryotic promoters, 
but  not specialized or tissne-specific transcription 
factor  binding  sites such as those  bound  by MyoD 
(e-g. Lassar et al., 1989). Similarly,  we  use a general 
three-periodic (inhomogeneous)  fifth-order Markov 
model of coding regions rather than using special- 
ized models of particular protein motifs or data 
base homology information a consequence, 
predictions made  by the program do not depend 
O n  presence of a similar gene in the protein se- 
quence  databases, but instead provide  information 
which is independent  and complementary  to that 
provided by  homology-based  gene identification 
methods such as searching the protein databases 
with BLASTX (Gish & States, 1993). Additionally, 
the model takes into account  many of the often 
quite  substantial differences in gene density and 
structure (e.g. intron length) that  exist between 
different C + G'% compositional  regions  ("iso- 
chores") of the  human genome  (Bernardi,  1989; 
Duret lv d., 1995). 

Our model is similar in its overall architecture to 
the  Gcwralized  Hidden Markov Model approach 
adopted i n  the  program Genie (Kulp cf d., 1996), 
but differs from most existing  programs  in several 
important respects. First, we use an explicitly 
douhle-stranded genomic sequence model in 
tvhich potential genes occuring on both  DNA 
strands arc analyzed in simultaneous and  inte- 
grated fashion. Second, while most existing inte- 
grated p p e   h ~ d i n g  program assume that in each 

input sequence thcre is exactly cmc ccrmplcte gene, 
our modcl treats the gcncrsll case  in  which the sc- 
quence may  contain a prtial gene, a complete 
gene, multiple complcte (or partial) genes, or no 
gcnc  at all. The  combination o f  the Joublc- 
stranded  nature of the modd and  the capacity to 
deal with variable numbers of genes should  prove 
particularly useful for analysis of long human 
genomic contigs, e.g. those of a hundred kilobases 
or more,  which will often contain multiple genes 
on  one  or  both DNA strands. Third, we introduce 
a. novel  method, Maximal  Dependence  Decompo- 
sition, to  model functional signals in DNA (or pro- 
tein)  sequences  which allows for  dependencies 
between  signal positions in a fairly natural  and 
statistically justifiable way. This method is applied 
to generate a model of the donor splice signal 
which  captures several types of dependencies 
which may relate to the mechanism of donor splice 
site recognition in pre-mRNA  sequences by U1 
small  nuclear ribonucleoprotein particle (U1 
snRhT') and possible other factors.  Finally, we de- 
monstrate  that  the predictive accuracy of GEN- 
SCAN is substantially better than other  methods 
when tested on standardized sets of human and 
vertebrate genes, and show that the method  can  be 
used effectively to predict novel  genes in long 
.genomic contigs. 

Results 
GENSCAN was tested on the Burset/Guigb set 

of 570 vertebrate multi-exon  gene  sequences  (Bur- 
set & Guig6, 1996): the standard measures of pre- 
dictive accuracy per nucleotide and per exon are 
shown in Table 1A (see  Table legend for details). 
Comparison of the accuracy data shows that GEN- 
SCAN is significantly more accurate at both the 
nucleotide and  the exon  level by all measures of 
accuracy than existing programs  which do not use 
protein  sequence homology  information (those in 
the upper portion of Table IA). At the nucleotide 
level, substantial improvements are seen in terms 
of Sensitivity ( S n  = 0.93 uersus 0.77 for the next 
best program, FGENEH), Approximate Correlation 
(AC = 0.91 uersus 0.78 for FGENEH) and Corre- 
lation Coefficient (CC = 0.92 uersus 0.80 for FGE- 
NEH).  At the exon  level, significani improvements 
are seen across  the  board, both in terms of Sensi- 
tivity ( 5 1  = 0.78 z~ersus 0.61 for FGENEH) and 
Specificity (Sp = 0.81 ucrsus 0.64 for FGENEH), as 
well as Missed  Exons (ME = 0.09 versus 0.15 for 
FGENEH) and  Wrong Exons (WE = 0.05 IWWS 
0.11 for GRAIL). Surprisingly, GENSCAN W R S  

found to  he  somewhat more accurate by almost all 
measures than the two  programs,  GenclD+ and 
GcneParser3,  which make use of protein scqucnce 
homology information (Table 1A). Exon-level sen- 
sitivity and specificity values  were substantially 
higher for GENSCAN  and Wrong Exons substan- 
tially  lcnver;  only i n  the category of Missed Exons 
did Genr1D-t do better (0.07 versus 0.09 for GEN- 



Accuracy pcr  nuclcotidc  Accurary per exon 
Progrnm  Sequences Sn S 17 AC cc Sn Sp Avg. ME WE 

GENSCAN 570 (8) 0.93 0.93 0.9 1 0.92 0.78 0.81 0.80  0.09 
FGENEH 569 (22) 0.77 0.98 0.78 0.80 0.61 0.64 0.64 0.15 

0.05 

GenclD 570 (2) 0.63 0.81 11.67 0.65 0.44  0.46 0.45 0.28 0.24 
0.  I2 

Genic 570 (0) 0.76 0.77 0.72 n/n 0.55 0.48 0.51 0.17 
570  (30) 0.72 

0.33 
GenLang 0.79 11.69 0.71 0.51 0.52 0.52 0.21 

562 (0) 0.66 CencPxser2 
0.22 

0.79 0.67 0.65 0.35 0.40 0.37 0.34 0 .  17 
GRAIL2 570  (23)  0.72 0.87 0.75 0.76 0.36 0.43 0.40 0.25 
SORFlND 561 (0) 0.71 0.85 11.73 0.72 0.42 0.47  0.45 0.24 0. I4 

0.1 1 

570 (28) 0.61 Xpound  0.87 0.68 0.69 0.15 0.18  0.17 0.33 
478 (1) 0.91 GeneID+ 0.91 U.SY 0.88 0.73 0.70  0.71  0.07 

0.13 

478 (1) 0.86 
0.13 

GeneParser3 0.91 OS6  0.85 0.56  0.58 0.57 0.14 0.09 

B GENSCAN accuracy for sequences grouycd by C + G ccmtent and by organism 

Subset 
Accuracy  per  nucleotide 

Sequences Sn 5P AC cc Sn Sp Avg. ME WE 
Accuracy per exon 

C + G  c40 86  (3) 0.90  0.95  0.90  0.93  0.78 0.87  0.84 0.14 0.05 
220 (1) 0.94 
208 (4) 0.93 

0.05 

C + G > 6 0  56 (0) 0.97 
237 (1) 0.96 

0.89  0.90  0.90  0.76 0.77 0.76 0.07 0.08 
Primates 0.94  0.93  0.94 0.81 0.82 0.82 0.07 0.05 
Rodents 191 (4) 0.90  0.93 0.89  0.91 0.75 0.80 0.78 0.11 0.05 

72 (2) 0.93 Non-mam. Vert. 0.93  0.90 ' 0.93 0.81 0.85 0.84 0.11 0.06 

C + G 40-50 0.92 0.91 0.91 0.80 0.82 0.82 0.08 
C +G50-60 - 0.93  0.90 0.92 0.75 0.77 0.77 0.08 0.05 

A, For each  sequence in the  test  set of 570 vertebrate  sequences  constructed by Burset & Guig6 (1996). the forwardstrand exons in 
the optimal GENSCAN parse of the  sequence  were  compared to the annotated  exons (GenBank "co5" key). The  standard  measures 
of predictive  accuracy per  nucleotide and  per exon (dexribed below)  were  calculated for ea& sequence and averaged  over all 
sequences  for  which they were defined. Results  for all programs  except GENSCAN and Genie are from Table 1 of Burset & Guig6 
(1996); Genie  results  are from Kulp et aI. (1996). Recent versions of Genie  have demonsmtd substantial  improvements in accuracy 
over  that  given  here (M. G. R e ,  personal  communication). To calculate  accuracy statistics, each nudebtide of a test sequence is 
classified  as  predicted positive (PP) if it is in a  predicted  coding  region or predicted  negative (PrJ) otherwisA, and a h  as actual  posi- 
tive (AP) if it is a coding  nucleotide  according to the annotation, or actual  negative ( A N )  athenvise These assignments  are  then  com- 
pared to calculate  the  number of hue positives, TP = PPnAP (Le. the  number of nucleotides which are both  predicted  positives and 
actual positive); false positives, FP = PPnAN; true  negatives, TN = PNnAN; and fa lse  negatives, FN = PNnAP. The  following  mea- 
sures of accuracy are then calculated. Sensitivity, Sn = TP/AP; Specifiaty, S p  = TP/PP; Correlation  Cwffiaent, 

and the Appromate Correlation, 

The rationale for each of these definitions is discussed by Burset & Guig6 (1996). At the exon level, predicted exons (PP) are  com- 
pared  to the actual exons (AP) from the  annotation;  true  positives (TP) is the  number of prediaed exons which exactly match an 
actual  exon (i.e. both  endpink exactly correct). Exon-level sensitivity (Sn) and specifiaty (Sp) are then defined wing the  same for- 
mulas as  at  the nucleotide level, and  the  average of Sn and Sp is calculated  as an overall  measure o€ accuracy in lieu of a  correlation 
measure. Two additional statistics are  calculated at  the exon level: Missed Exons (ME) is the proporiion of true exom not  overlapped 
by  any predicted exon, and Wrong Exons (WE) is the proportion of predicted  exons  not  overlapped by  any real  exon. Under  the 
heading  Sequences, the number of sequences (out of 570) effectively  analyzed by each  program is g i v q  followed by the number of 
sequences  for which no gene was  predicted, in parentheses.  Perfonnance of the programs which make use of amino add similarity 
searches,  GenelD+  and GeneParser3, are  shown  separately  at  the  bottom of the Table: these programs were run only on sequences 
less than 8 kb in length. 8, Results of GENSCAN for  different  subsets of the  Burset/Guig6 test set, divided  either  according  to  the . 
C -k G% composition of the GenBank sequence  or by the  organism of origin. Classification by organism was based on the  GenBank .. 
"ORGANISM' key.  Primate  sequences are mostly of human origin; rodent  sequences  are rnmtly from mouse and rat; the  non-rnam- . 
malian  vertebrate se t  contains 22 fish, 17 amphibian, 5 reptilian and 28 avian  sequences. 

SCAN). Use of protein sequence homology  infor- 
mation  in conjunction with GENSCAN predictions 
is addressed in the Discussion. 

Going beyond exons  to  the level of whole  gene 
structures, we may define the "gene-level accu- 
racy" (GA) for rl set of sequences as the proportion 
of actual  genes which are predicted exactly, i t .  all 
coding  exons predictd esactly with  no  additional 

3.7. 

predicted exons in  the transcription unit (in prac-:l$ 
tice, the  annotated GenBank sequence). Gene-level 
accuracy was 0.43 (2-€3/570) for GENSCAN in the ' 
Burset/Guig6 set, demonstrating that it  is indeed 
possible to pmlict complete multi-exon gene struc- 
tures  with a reasonable &..;re of success by com- 
puter. It should be noted khat this proportion ,.: 
almost certainly overstates the true  genelevel rlc- :.' 
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curacy of GENSCAN lm-ause of the substantial 
bias in the Burset/Guig6 set towards  small  genes 
(mean: 5.1 kb) with relati\-ely simple intron-exon 
structure (mean: 4.6 exons p e r  gene). hTe\wtheless, 
GENSCAN was able to mmtly reconstruct some 
highly comytex  genes, the most dramatic  example 
being  the  human gastric (H + + K+)-ATPase gene 
(accession no. J05451), containing 22 coding exons. 
The performance of GENSCAN was  found to be 
relatively insensitive to C + G content (Table lB), 
with CC values of 0.93, 0.91, 0.92 and 0.90 ob- 
served for  sequences of < 40,40 to 50, 50 to 60, and 
>6O% C + G, respectively, and similarly homo- 
geneous values for the AC statistic. Nor did accu- 
racy vary substantially for different subgroups of 
vertebrate species  VabIe 1B); CC was 0.91 for the 
rodent  subset, 0.94 for primates  and 0.93 for  a  di- 
verse collection of non-mammalian vertebrate se- 
quences. 

A  jeature which may prove extremely useful  in 
practical applications of GENSCAN is the " for- 
ward-backward " probability, p ,  which is calcu- 
lated for each predicted exon as described  in 
Methods. Specifically, of the 2678 exons predicted 
in the  Burset/Guig6 set 917 had p > 0.99 and, of 
these, 98% were exactly correct; 551 had p E t0.95, 
0.991  (92% correct); 263 had p E 10.90,  0.951 (88% 
correct);337 had p E L0.75, 0.901 (75% correct); 362 

had p E [0.50, 0.751 (54% m m t ) ;  and 248 had 
p E [O.OO, 0.501, of which 30% were correct. Thus, 
the  forward-backward probability provides a use- 
ful guide  to  the likelihood that a predicted exon is 
correct and can be used to pinpoint regions of a 
prediction  which are more certain or  less certain. 
From  the  data  above,  about one half of predicted 
exons have p > 0.95, with the practical consequence 
that  any  (predicted)  gene with four or more exom 
will likely have two or  morepredicted exons with 
p > 0.95, from  which PCR primers could be de- 
signed  to screen a cDNA library with very high 
likelihood of success. 

Since for GENSCAN, as for most of the other 
programs  tested,  there  was  a certain degree of 
overlap  between  the "learning" set  and  the Bur- 
set/Guig6 test set,  it  was  important also to test the 
method on a  truly  independent test set. For h s  
purpose,  in  the  construction of the learning  set 2, 
we removed all genes more than 25% identical at 
the amino acid level to the genes of the previously 
published  Geneparser test sets (Snyder & Stormo, 
1995), as described  in Methods.  Accuracy statistics 
for GENSCAN,  GeneID,  GeneParser2 and GRAIL3 
(GRAIL 11+ " assembly" option) on Geneparser 
test  sets I and II are  given in Table  2. In this Table, 
exons 



t.snn-level sensitivity statistic of Bursct k Guigd 
(1996). Comparison of the  CENSCAN accuracy 
statistics for the two Geneparser test scts (Tablc 2 )  
with each other and with those for the Burset/ 
Guigli test  set (Table 1) show little diffcrcnce i n  
predictive accuracy. For examplt., identical corre- 
lation coefficient  values of 0.93 were obscrved in 
both GeneParser  test sets ucrslls 0.92 i n  thc Bursct/ 
Guigd test set. Similarly, the proportion o f  c'kons 
correct was 0.79 and 0.76 in GencParsor test scts I 
and 11, as compared to 0.78 for the corresponding 
value (exon-level sensitivity) in the Bursrt/Guig6 
set. Again, performance of the progranl is quite ro- 
bust with respect  to differences in C + G content; 
the somewhat larger fluctuations  observed  in 
Table 2 undoubtedly relate tb the much smaller 
size of the  GeneParser  test sets. 

Of course, it might be argued  that  none of the 
accuracy results described above  are  truly  indica- 
tive of the program's likely performance on long 
genomic contigs, since  all three of the test sets  used 
consist primarily of relatively short  sequences con- 
taining single genes, whereas  contigs  currently 
being generated by genome sequencing  labora- 
tories  are often tens to hundreds of kilobases in 
length  and  may contain several  genes  on  either or 
both DNA strands. To our  knowledge,  only  one 
systematic test of a  gene  prediction  program 
(GRAIL) on long human contigs has so far  been re- 
ported  in the literature (Lopez ef al., 1994), and  the 
authors  encountered  a  number of difficulties in car- 
rying out this test,  e.g.  it was  not  always clear 
whether predicted exons not  matching  the  annota- 
tion  were false positives or might  indeed  represent 
real exons which had not  been  found  by  the orig- 
inal  submitters of the sequence. As a test of the 
performance of gene prediction  programs on  a 
large  human contig, we ran GENSCAN and 
GRAIL II on the recently sequenced CD4 gene re- 
gion of human chromosome 1 2 ~ 1 3  (Ansari-Lari 
et nl., 1996), a contig of 117 kb in  length  in  which 
six genes have been detected and  characterized ex- 
perimentally. 

Annotated genes, GENSCAN predicted  genes, 
and GRAIL predicted exons in this sequence are 
displayed in  Fi,we 1: both  programs  find  most of 
the known exons in this region, but  significant 
differences between the  predictions  are  observed. 
Comparison of the GENSCAN predicted  genes 
(GS1 through GSS) with the  annotated  (known) 
genes  showed that: GSl corresponds closely to  the 
CD4 gene (the predicted exon at  about 1.5 kb  is ac- 
tually  a non-coding exon of CD4);  GS2 is  identical 
to  one of the alternatively spliced forms of Gene A; 
GS3 contains several exons from  both  Gene B and 
GNB3; GS5 is identical to ISOT, except for the  ad- 
dition of one eson at around 74 kb; and GS6 is 
idcntical to TPI, except lvith a  different  translation 
start site. This leaves G-9, GS7 and GSS as poten- 
tial false positi\.es, which do not  correspond to any 
annotated geuw, of which GS7 and GS8 are  ovcr- 
Iappcd by GRAIL FmIicttA exons. 

A BLASTP  (Altschuf et a/., 1990) search o f  the 
predicted peptides corresponding to GS4, GS7 a n d  
CS8 against the non-redundant protein seqwnce 
databases revealed that: GS8 is substantially icienti- 
cal (BLAST  score 419, P = 2.6 E-57) to ~ O L I S E  60 S 
ribosomal  protein  {SwissProt  accession no. 
P47963); GS7 is  highly similar (BLAST scorc 150, 

protein C26E6.5 (GenEank accession no. 5,72506); 
and Cs4 is not  similar to any known protcin (no. 
BLASTP hit  with P < 0.01). Examination of the st'- 
quence around GS8 suggests that this is probably a 
60 S ribosomal  protein pseudogene. Predicted gene 
GS7 might be an expressed  gene, but we did not 
detect  any hits against the database of expressed 
sequence tags (dbEST) to confirm this. However, 
we did find  several ESTs substantially identical to 
the predicted 3'LJlX and exons of GS4 (GenBank 
accession no. AA07M39, W92850, AA055898, 
R82668, AA070534, W93300 and  others), strongly 
implying that this is indeed an expressed human 
gene which was missed by the  submitters of this 
sequence (probably because GRAIL did not detect 
it). Aside from the prediction of this novel gene, 
this example also illustrates the potential of GEN- 
SCAN to predict the number of genes in a se- 
quence fairly  well: of the eight genes predicted, 
seven correspond closely to known or putative 
genes and only one (GS3) corresponds to a fusion 
of exons from two known genes. 

P = 2.8  E-32)  to Catnmhabdifis C / C ~ ? I S  prt.Jict?d 
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Discussion 
As the focus of the human genome project shifts 

from  mapping to large-xale sequencing, the need 
for efficient methods for identifying genes in anon- 
ymous genomic DNA sequences  will increase. Ex- 
perimental approaches r d  always be required to 
prove  the exact  locations, transcriptional activity 
and splicing patterns of  nove1 genes, but if compu- 
tational methods can give accurate  and reliable in- 
dications of exon locations beforehand, the 
experimental work involved may often be si,hfi- 
cantly  reduced. We have developed  a probabilistic 
model of human genomic sequences which ap- 
proximates many of the important  structural  and 
compositional features of human genes, and  have 
described the implementation of h s  model in 
the GENSCAN program to predict  exon/gene 
locations in  genomic sequences. Novel features of 
the  method include: (1) use of distinct, explicit, em- 
pirically derived sets of model parameters to cap- 
ture differences in gene structure  and composition 
between distinct C + G compositional regions (iso- 
chores) of the human genome; (2) the capacity to 
predict multiple genes in a sequence, to deal with 
partial as well  as conIFlete genes, and to predict 
consistent sets of p n t s  c ~ ~ ~ t r i n g  on either or both 
DNA strands; and (.3) new statistical modcls of 
donor  and acceptor ~ p l i ~  sites which capture PO- 
tentially  inywrtant  depxtdencies between signal 
positions. Significant h p v e n w n t s  in prcdictivc 
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Figure 1. A diagram of GenBank sequence HSU47924 (accession  no U47924, length 116,879 bp) is shown  with  anno- 
tated  coding  exons (from the GenBank CDS features)  in  black, GENSCAN predicted  exons  in  dark  gray,  and GRAIL 
predicted  exons  in light gray. Exons on the forward  strand  are  shown  above  the  sequence  line;  on  the  zeverse  (comp- 
lementary)  strand,  below  the sequence line. GRAIL I1 was m through  the  email  server  @BOml.gov):  final  pre- 
dicted  exons of any quality are  shown Exon  sizes  and  positions are to  scale,  except  for initial, terminal  and  single- 
exon  genes,  which  have an added  arrowhead or -tail (see key  above)  which  causes  them to appear  slightly  larger 
than  their  true  size.  Since GRAIL does  not  indicate distinct  exon  types  (initial versus internal umus terminal  exons), 
all GRAIL exons are shown as internal  exons.  Gene  names  for  the  six  annotated  genes  in this region (CD4, Gene A, 
Gene 3, GNB3, ISOT and VI) are shown  on  the  annotation  line,  immediately  preceding the first coding  exon of the 
gene.  The GENSCAN predicted gene are  labeled GS1 to  GS8 as they  occur  along  the  sequence. 

accuracy have  been  demonstrated for GENSCAN 
over existing programs,  even those  which use pro- 
tein sequence homology information, and  we  have 
shown  that  the program can be used to detect 
novel genes even  in sequences previously  subjected 
to intensive computational and experimental scru- 
tiny. 

In  practice, several distinct types of  computer 
programs  are often used to analyze a newly  se- 
quenced genomic region.  The  sequence  may  first 
be screened  for repetitive elements with a program 
like CENSOR (Jurka et al., 1996). Following  this, 
GENSCAN and/or other gene prediction pro- 
grams could be run, and the predicted peptide 
sequences searched against the protein sequence 
databases wit11  BLASTP (Altschul et a/., 1990) to 
detect possible honmlogs. if a potential  homolog 

is detected,  one  might  perhaps refine the  predic- 
tion by submittirig the genomic region corre- 
sponding  to  the predicted gene together with  the 
potential protein homolog  to the program Pro- 
crustes (Gelfand et al., 1996), which uses a 
"spliced alignment" algorithm to match the  geno- 
mic sequence  .to the protein. Even in the  absence 
of a protein homolog, it  may be possible to con- 
firm the expression and precise 3' terminus of a 
predicted gene using  the database of Expressed 
Scqucnce Tags (Boguski, 1995). Finally, a variety 
of esperimental  approaches such as ItT-PCR and 
3' RACE are typically  used (see, e.g., Ansari-lari 
rt 171.1 1996) to pinpoint precise exon/intron 
boundaries and possible  alternatively spliced 
forms. At this stage, computational approaches 
may also prove useful, e.g. GENSCAN high 



probability exons  could  be  used  to design PCR 
primers.  The GENSCAN program has been nude 
available through the  World  Wide Web [http:l/ 
gnomic.stanford.edu/GENSCANW.l~tml] a n d  by 
electronic  mail  (mail  sequence in FastA form,1t to 
genscanOgnomic.stanford.edu). 

It is hoped that studies of the statistical properties 
of genes may yield  clues to the sequence depen- 
dence of the  basic  biochemical processes of tran- 
scription, transla tion and RNA splicing ~\-hich 
define genes biologically. As an example of such an 
application, we close with a discussion of some of 
the statistical properties of donor splice sites 
brought out by application of the Maximal Depen- 
dence Decomposition  (MDD), approach (see 
Methods). Overall,  the  results support  the  well es- 
tablished hypothesis that base-pairing with U1 

-"I." V . . " V I " I I  I ICUIL.,,VI, 
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snRNA, or with  other  factors of identical  specificity, ; 
is of primary importance  in donor site recognition 1 
(e.g. McKeown, 1943). However, the MDD data of .[ 
Figure 2 also suggest wme fairly subtle properties I 

of the U1:donor  interaction, namely: (1) a 5'/3' com- 
pensation effect, in which matches to consensus 
nucleotides at nearby positions on the same  side of 
the intron/exon junction are positively associated, 
while  poor matching on one side of o f 0  0  9 . 3  T c  . 1  4 7 l  0  1 a r 4 2 7 . 9  6 3 3 . 4  T m  ( o n j  1 1  0  0  1 0 . 3  4 9 4 n s  ) . 1  4 7 l  0  1 1 6 . 1 1 4 v e  p o s i t s s o c i a t e d T m  ( U 1  ) T j  / F 1  1  / F 1  1  T f  - w 1  4 4 2  6 8  0   4 5 9 . 4  7 5 5 . 3  T c T j   p o T j  0 . 0 6 9 9 9  T c   9 e  i n  in 
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5'13' compensation effect 

First, G-, is almost clmq..letcly conser\w.l  (97%) 
in H5 donor sites (those with a nonC nuclcotide at 
pOSitiw7 + 5 )  w r w s  7540 in GI sites, suggesting that 
absence of the G.C basepair \\.it11 U1 SIIRNA at 
position +5 can be conyertsated for  by a G.C 
base-pair at position -1, ~5th a virtually absolute 
requirement for one of these two G-C base-pairs 
(Only five of 1254 donor sites lacked both G, and 
Gd1). Second, the H, subset exhibits substantially 
lugher consensus matching at position -2 
(& = 85% in H, versus 3% in GJ, while the G5 
subset exhibits stronger matching at  positions +4 
and +6. Similar  compensation is also observed in 
the G5G-, versus G,H-, comparison: the G 5 K 1  
subset exhibits substantially higher consensus 
matching at positions +6 f76Yo i v r S U S  42%), +4 
(93% u e m s  70%) and +3 (10004 R; zersus 93%).  Yet 
another example of compensation is observed in 
the G5G-, A_, versus G5G-, B-, comparison, with 
the G5G-1B-2 subset exhibiting  increased consensus 
matching at positions +I and i 6 ,  but  somewhat 
lower matching at position -3. 

Adjacent base-pair effect 

H, splice sites have nearly random (equal)  usage 
of the four nucleotides at position t6, strongly im- 
plying  that base-pairing rri th U1 at position +6 
does  not occur (or  does not aid iri donor recog- 
nition) in the absence of a base-pair at position +5. 
The almost random &hibution of nucleotides at 
position -3 of the G,&-,B-2 donor sites  also 
suggests that base-pairing with U1 snRNA at pos- 
ition -3 does not OCCUT or is of little import  in the 
absence of a base-pair at position -2. 

G3 preference effect 

Comparison of the relative  usage of A versus G 
at position +3 in the various subsets reveals sev- 
eral interesting features. Perhaps surprisingly, G is 
almost as frequent as A at position +3 (45% versus 
49%) in the entire set of donor sites, despite  the ex- 
pected increased stability of an A - U  versus G.U 
base-pair a t  position +3. Only in subset H, is a 
dramatic preference €or A over G a t  position +3 
observed (81% vc~rsus 15%), suggesting that  only  in 
the absence of the strong G .C base-pair at position 
4-5 does the added binding energy of an A .  U ver- 
5 ~ s  G U base-pair at position +3 become critical to 
donor site recognition by U1 snRNA.  On the  other 
halld, i n  t I w  most strongly consensus-matcIling 
donor sitc subset, G5G-,A-,il,, there is actually a 
strong prc'fcrclice for G, o\'er A, (59% versus 27"/0)! 
TRIO possibie explanations for this observation 
Seen] wnsonable: either (1) there is selection  to ac- 
tually waken the U1:donor interaction in these 
strongly matching sites so that L'1 snRNA can 
more easily dissociate from the donor site to per- 
mit subsequent steps in  splicing;  or (2) G3 is pre- 

ferred over A ,  ;It some step i n  splicing subscquent 
to donor site sclcction. 

Methods 

Sequence sets 

The  non-redundant  sets of human single- and 
multi-exon genes constructed by David Kulp and 
Martin Reese (22 Aug., 1995) were used as a start- 
ing point for database construction [ftp:// 
ftp.cse.ucsc.edu/pub/dna/genes]. These sets con- 
sist of GenBank files, each containing a single 
complete  gene (at least ATG -+ stop,  but often in- 
cluding 5' and 3' untranslated  and  flanking re- 
gions) sequenced at  the genomic level, which have 
been  culled of redundant or substantially similar 
sequences  using BLASTP (Altxhul et al., 1990).  We 
further  cleaned these sets by removing genes with 
CDS or exons  annotated as putative or uncertain 
(e.g. GenBank files HSALDC, HT.MADH6), alter- 
natively  spliced  genes (HSCALCAC, HSTCRT3D), 
pseudogenes (e.g. HSAK3pS, HSGKPl), and genes 
of viral origin (HBNLFl), resulting in a set of 428 
sequences. For testing purposes, we further re- 
duced this set by removing all genes  more  than 
25% identical at the amino add l e d  to those of 
the  GeneParser test sets (Snyder & Stormo, 1995) 
using the PROSET program (Brendel, 1992) with 
default  parameters.  The  set of 238 multi-exon 
genes and 142  single-exon (intronless) genes re- 
maining after this procedure  are collectively  re- 
ferred to  as the  learning set, designated 2' (gene 
list  available  upon  request). The total size of the  set 
is 2,580,965 bp: the multi-exon genes in 9 contain 
a  total of 1492 exons and  12% introns. 

All model  parameters, e.g. state  transition and 
initial  probabilities, splice site models, etc. were  de- 
rived  from this data  set as dexribed iater in this 
section, with two notable exceptions: (1) the  pro- 
moter  model,  which  was  based on published 
souces;  and (2) the coding region  model,  for 
which this set  was  supplemented  with  a  set of 
complete  human cDNA sequences derived as fol- 
lows. W complete human cDNA sequences corre- 
sponding  to  proteins of at least 100 amino  acids in 
length  {the  length  minimum was imposed in order 
to avoid inclusion of cDNA fragments) were ex- 
tracted  from GenBank  Release 83 (June,  1994).  This 
set was then cleaned at the amino  acid  level using 
PROSET as above  both with  respect to  itself and 
with respect to the Geneparser test sets (gene list 
available upon request). This set was then  com- 
bined \\.it11 the coding sequence from Y to form a 
set (6 oi 1999 complete coding sequences totaling 
in escess o f  3195 kb. 

Model of genomic sequence structure 

Figure 3 illustrates  a general  model of the struc- 
ture of genomic sequences. In ttus model, the (hid- 
den) states of the  model (represented as circles and 
diamoncls i n  the Figure) correspond to fundamen- 



Figure 3. Each circle or  diamond  represents  a  functional 
unit. (state) of a gene  or genomic  region: N, intergenic 
region; P, promoter; F, 5' untranslated  region  (extending 
from the start of transcription up  to  the translation in- 
itiation signal); E,,,s,, singleexon (intronless) gene (trans- 
lation start + stop codon); Eke, initial exon (translation 
start + donor splice  site); Et (0 < k < 2), phase k in- 
ternal exon (acceptor  splice site + donor splice site); 
E,-, terminal  exon (acceptor splice site stop codon); 
T, 3' untranslated region (extending from just after the 
stop  codon to the  polyadenylation signal); A, polyade- 
nylation signal; and Ik (0 < k < Z), phase k intron (see 
the text).  For  convenience, translation initiation/terrnin- 
ation  signals  and splice sites are included as subcompo- 
nents of the associated  exon state  and intron states are 
considered to extend from just after a donor splice site 
to just before the branch point/acceptor splice site.  The 
upper half of the Figure corresponds to the states (desig- 
nated with a superscript +) of a  gene on the  forward 
strand, while thc lower half (drrjignated  with  superscript 
-) corresponds t o  a gene on the opposite (cornplemen- 
tary) strand. For emnplc, prwwding in the 5' to 3' 
direction on the (arbitrarily chosen) forward strand,  the 
components of an E'x (ftwvard-strand  internal  exon) 
state will be cnctmntertA i n  the order: (1) acceptor site, 
(2) coding rcginu, (3) donor site, while  the  components 

tal functional units of a eukaryotic gene, e.g. exon, f 
intron, intergenic region, etc. (see Figure Iegcnd for i 
dctails), which  may  occur in any biologically con-  ,; 
sistcnt order. Note  that introns and internal ~ 'XOIIS  , 
i n  our nlodel are divided according to "phase", ' 

which is closely related to the  reading frame. Thus, 
a n  intron which faHs between codons is consiciered 
phase 0; after the first base of a codon, phase I ;  
aftcr the second base of a codon, phase 2, denoted 

, 

I , ) ,  I , ,  I,, respectively. Internal exons are similarly I 
divided according to the phase of the previous in- i , 
tron (which  determines the codon position of the 
first base-pair of the exon,  hence the reading 
frame). For  convenience, donor  and acceptor splice 
sites, translation initiation and termination signals . 
are considered as  part of the associated exon. . .  

Reverse strand states and forward  strand  states i 
are dealt with  simultaneously in this model, some- 
what similar to the treatment of both  strands in the 
GENMARK program  (Borcdovsky & McIninch, 
1993); see the legend to Figure 3. Though somewhat 
similar to the model d w i  by Kulp et al .  (1996), 
our model is substantially more general in that it  in- 
cludes: (1) single as well as multi-exon genes; (2) 
promoters, polyadenylation signals and intergenic 
sequences; and (3) genes cxcuring on either or both 
DNA strands. In addition, as mentioned previously, 
partial  as well as complete gmes are permitted as is 
the occurrence of multiple genes in the same se- 
quence. Thus, the essential stycture o€ most ver- 
tebrate genomic sequences likely to  be  encountered 
in genome sequencing projects can  be described by 
this  model structure. The most notable limitations 
are  that overlapping banscription units (probably 
rare)  cannot  be handled and that alternative spli- 
cing is not explicitly addressed. 

The  model, essentially of semi-Markov type, is 
conveniently formulated as an explicit state dur- 
ation  Hidden Markov  Model (HMM) of the sort 
described by Rabiner (19S9). Briefly, the model is 
though of as generating a "parse" +, consisting 
of an ordered set of states, ;i = { q ~ ,  42 . . . , q,l}, 
with  an associated set of len,$hs (durations), 
d = (dl, d2 ,  . . . , d, )  which, using probabilistic 
models of each of the state types, generates a DNA 
sequence S of len,oth L = X:= I di. The  generation 
of a  parse corresponding to a  (predefined) se- 
quence length L is as follows: 

(1) A n  initial state q, is chosen  according to 
an initial distribution on  the states, E, i.e. , 

x, = P(ql = Q"'), where @'(j = 1, . . . . ,27) is an in- 
dexing of the  state t p  (Figure 3). 

(2) A length (state duration), dl, corresponding , 

to the  state qr is generated conditional on  the value !:: 
of q1 = Q('1 from the len,$h distributionfQ(o. 

;j 

, .  

of an  E, (rcverst~sttxd inttmd eson) state will be 
encountcrcd in the cnlt-r: (1) invert4 cc)n~plcn~cnt o f  
donor sitc, ( 2 )  i n w r t t d  c\.nrpkwwnt of coding region, 
(3) inverted complcnwut ~f aoxptor site. Only tiw inter- 
gcnic  statc N is n o t  dividtd xwniing t o  strand. 



(3) A S ~ U C ' I I C ~  scgwnt 5, ot ItnSth d l  is gener- 
atcd, conditional (311 d l  and 1 j l ,  ,Iccoding to a11 ap- 
propriatc scyuc'ncc gcnersjting 111odc.1 for state  type 
'I1 

(4) The subscqucnt state q2 is generated, con- 
ditional on the value ot q,, tiom the (first-order 
Markov)  state transition matrix T, i.e. 

: This process is repeated  until  the sum, Cy= d ,  
of the state durations first equals or exceeds the 
length L, at which point the last state duration d,, is 
appropriately truncated, the final stretch of se- 
quence is generated, and the process stops:  the se- 
quence generated  is simply the concatenation of 
the sequence  segments, S = sls2.. .s,. Note  that  the 
sequence of states generated is not restricted to cor- 
respond to a single gene, but could represent a  par- 
tial gene, several genes, or no  genes at all. The 
model thus has four main components: a  vector of 
initial probabilities 5, a matrix of state  transition 
probabihties T, a set of length distributionsf, and a 
set of sequence  generating  models P. Assuming for 
the moment  that these four components have  been 
specified, the model can be used  for prediction in 
the folIov.7ing way. 

For a fixed  sequence Ien,gth L, consider the  space 
st = Q L  x Y, where ai is the set of (all possible) 
parses of length L and .YL is the set of (all possible) 
DNA sequences of  len,& L The  model M can  then 
be  thought of as  a probability measure on this 
space, i.e. a function vd-&31 assigns a  probability 
density to each  par+e/sequence  pair. Thus, for a 
particular sequence 'is E -Y, Ice  can calculate the 
conditionai probability of a particular parse 4; E Q L  
(under the probability meaSure induced by M) 
using Bayes'  Rule  as: 

Ti,j = Ptq, + 1 = Q"I 91. = Q'"I- 

The essential idea is that  a precise probabilistic 
model of what  a gene/genomic  sequence  looks like 
is specified in advance and then, given a sequence, 
one  determines  which of the vast number of poss- 
ible gene structures (involving any valid combi- 
nation of states/lengths) has highest likelihood 
given the sequence. In addition to the  optimal 
parse, it may also be of interest to study  sub-op- 
tinlal parses and/or sub-optimal  exons or introns 
(to be described elsewhere). 

Algorithmic issues 
Given a sequence S of length L, the joint prob- 

ability, P{$,,Sj, of generating  the parse 4; and  the 
sequence S is given  by: 

\vl~ert. the states of 4, are q l ,  q2, . . . , q,, with associ- 

ated  state  lengths d l ,  t i z ,  . . . . , t i , , ,  \vhich brcak the 
scqucnce  into segments sI, s2, .. . , s,,. Hcre P(s,lq,, 
dkJ  is the  probability o f  pmcr,ltiug the scquence 
segment sk undcr the appropriate s~yuence gener- 
ating  model for a typeyk state o f  lalgth d,. A re- 
cursive  algorithm of the sort dcvised  by  Viterbi 
(Viterbi, 1967; Fomey, 1973) may then  be  used to 
calculate $ol,,, the  parse  with maximal  joint  prob- 
ability (under M), which gives  the predicted gene 
or set of genes in the sequence.  Variations of t h s  
algorithm  have  been described and  used  on several 
occasions previously  in sequence analysis (e.g. 
Sankoff, 1992; Gelfand & Roytberg,  1993). Certain 
modifications  must  be  made to the standard algor- 
ithm for the semi-Markov  case  used  here uersus the 
simpler  Markov case. The  specific  algorithm  used 
is described by Burge (1997); see also  Rabiner 
(1989, section IV D). 

Calculation of PIS} may  be carried out using the 
"forward" algorithm;  the "backward"  algorithm is 
also  implemented in order to calculate certain ad- 
ditional  quantities of interest (both algorithms are 
described by Burge, 1997; see also  Rabiner,  1989). 
Specifically, consider  the event E[:!YI that a particu- 
lar  sequence  segment [x ,  y] is an 'internal  exon of 
phase k. Under M, this event  has probability 

where  the sum is taken over all parses which 
contain the  given exon E& This sum can  be 
conveniently  calculated using the "fonvard-back- 
ward"  procedure, which is described in general 
by Rabiner (1989) and more  specifically  by  Burge 
(1997); see  also  Stormo & Haussler (1994) where 
a  similar  idea was introduced in the context of 
exon-intron  prediction. This probability has been 
shown to be  a useful guide to the degree of cer- 
tainty  which should be ascribed  to  exons pre- 
dicted by the program (see Results). Run time for 
the GENSCAN program, though at worst quadra- 
tic in the  number of possible state transitions, in 
practice grows approximately linearly with se- 
quence  length for sequences of several  kb  or 
more.  Typical run time  for a sequence of length 
X kb on a Sun SparclO workstation is about 
X + 5 seconds. ' 

Initial and transition probabilities 

Since we are attempting to model a randomly 
chosen  block of contiguous human  genomic DNA 
as  might be  generated by a genome  sequencing 
laboratory,  the initial probability of each state 
should be chosen proportionally to  its estimated 
frequency in bulk  human (or vertebrate) gcnomic 
DNA. However,  even this is not trivial since gene 
density and certain aspects of gene structure are 
known to vary  quite dramatically in  regions of dif- 
fering C + G% content (so-called  "isochores") of 
the hLurnan genomc (Bernardi, 1989, 1'393; Durct 
t>f nl., 1995), with a much  higher  gene dcnsity i n  



Table 3. Ccne density and structurc as a function of C + C; composition: derivation of initial  and transition 
prob.lbilitics 

Graltl- I I I  IT1 1v 
C + (70 range <4,7 43-51 51-57 3 7  
N L ~ V Y  o f  gcnes 65 115 Y3 101 
Est. prqwution singleexon genes 0. l h  0.19 0.23 0.16 
Codclcn: singlF-exon genes bp) 1131) 1251 1m 1137 
Codelcn: multl-exon genes b p )  902 90s 111% 116.5 
Introns per multi-exon gene 5.1 4.9 3.3 5.6 
M c m  intron length (bp) 2069 lOS6 pfll 51 R 
Est. R I C ~ I I  transcript Itngth ibp~  10S66 0504 5751 4833 

- -  

lsoclrorc 
DNA smount in genome (1%) 

Estimated  gene  number 
Est. nlwn intergenic  length 

L1 t- L‘ H1+ H2 H3 H3 
2074 1054 102 68 

22100 24700 91 00 9100 
8300U 36000 m 2600 

Initial probabilities: 
Intergenic ( N )  0.892  0.867 0.30 0.41s 
Intron (l:, I:, I;, &, I;, I ; )  0.095 0.103 0338 0.388 
5’ Untranslated region (F+, F-) 0.00s 0.018 0 - 0 7  
3’ Untranslated region (T+, J-) 0.005 0.011 0.015 0.072 

0.122 

The  top portion of the  Table shows  data from  the  learning  set of 380 genes,  partitioned  into f o u r  groups  according to the C + G% 
content of the GenBank sequence; the  middle  portion  shows estimates of gene  density from Em& d d. (1995) for isochore cornpart- 
men&  corresponding to the  four  groups  above;  the  bottom  portion  shows  the initial probabilities used by  GENSCAN for sequences 
of each C -+ G% compositional  group,  which  are  estimated  using data from the  top  and middle portions of the  Table. All of the 
values  in  the  top portion are  observed  values,  except  the  proportion of single-exon genes. Since singleexon  genes  are typically much 
shorter than multi-exon genes at  the genomic  level (due to the absence of introns) and hence easier to sequence  completely, they are 
probably  substantially  over-represented in the  learning set relative to their  true  genomic frequencr; accordingly,  the  proportion of 
singleexon genes in each group was  estimated  (somewhat arbitrarily) to be one half of the ObSRved fraction.  Codelen  refers  to  the 
total number of coding basepairs  per gene.  Data  for subsek III and IV are estimated from the Duret et al. (1995) data for isochore 
H3 assuming  that one-half of the genes and 60% of the  amount of DNA  sequence  in is0chot-e E fak into the 51 to 57% C + G 
range.  Mean  transcript  lengths  were  estimated  assuming an average of 769 bp of 5’uIR and Ebp of 3’uTR per  gene  (these  values 
derived from comparison of the  “prim-transcript” and “CDS” features of the GenBank annotation m the genes of the  learning set). 
To simplify the  model, the initial probabilities of the  exon,  polyadenylation  signal and promoter s & t s  are set to zero. All other 
initial probabilities  are estimated from  the data  shown above, assuming that all features  are qual& lilceIy to war on either  DNA 
strand.  The initial probability for all intron  states  was  partitioned  among  the three intron  phases according\,to the observed fraction 
of each phase in the Ieaming set Transition  probabilities were estimated  analogously. \ 

C + G-rich regions than in A + T-rich regions. 
Therefore, separate initial and transition  prob- 
abaty distributions are  estimated for sequences in 
each of four categories: I ( ~ 4 3 %  C + G); II 
(43 - 51); III (51 - 57); and IV (>57), corresponding 
approximately to M o r e  compartments L1+ L2, 
H1+ H2, and two subsets of the H3 isochore,  re- 
spectively. Details are given in  Table 3 and its le- 
gend.  Note that the Merences in estimated  initial 
probabilities are quite  dramatic  with, for example, 
the probability of hitting an intergenic  region 
much higher in A + T-rich sequences  than  for 

The @iologically permissible) state  transitions 
are  shown as arrows  in  Figure 3. Certain tran- 
sitions  are obligatory (e.g. pf --f F+) and hence  are 
assigned probability  one; all  others  are  assigned 
.(maximum likelihood) values equal  to  the  observed 
state  transition frequency in the  learning  set 2’ for 
the  appropriate C + G compositional  group.  Over- 
all, transition frequencies varied  to  a lesser degree 
between groups than did initial  probabilities 
(Table 3). There \\-as a trend (possibly  related to 
biases in the dataset toward  genes  with  shorter 
genomic length) Cor A + T-rich genes to have fewer 
introns, leading to slightly different  estimates for 
the r: + E:,nl probabilities. 

C + G-rich ones. 

State  length distributions 

In general, the states of the model (see  Figure 3) 
correspond to sequence wgments of highly vari- 
able length. For certain states, most notably the in- 
ternal exon states ’ E;, Ieno$h is probably an 
important  property for proper biological function 
(i.e. proper  splidng and mclusion in the final pro- 
cessed mRNA). For  e.campIe, it  has been shown 
in vivo that  internal deletions of constitutively re- 
cognized internal exons to sizes below  about 50 bp :. 
may often lead to exon skipping, i.e. failure to in- ..$: 
clude  the exon in the final processed mRNA (Dom- 2, 
inski & Kole, 199f), and there is some evidence .:.: . 
that  steric interference between factors recognizing ii 
splice sites may make splicing of small exons more $ 
difficult (e.g.  Black, 1991). Of course, some very 
small  exons do exist and are efficiently  spliced. At ?? 
the  other  end, there is some evidence that spliceo- 
soma1 assembly is inhibited if internal exons are in- 
ternally  expanded beyond about 300 nucleotides 
(Robberson et d., 19901, but conflicting evidence .$, 

also exists (Chen k Ch-sin. lW4), and the lengths . 
of flanking  introns may aLq> be important (Sterner .; 
et al., 1996). Overall, nwvt results have tended to iQ 
support the idea that “mtdiunl-sized” internal !;{, 
exons  (between about 3.. and 300 by in length) ;:j 1 
may be more easily S F ~ L W ~  than excessively long .’; 

$ - I  
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Figure 4. Length d i s t r j b u k  are shown for (a) 1254 introns; (b) 238 initial exons; (c) 1151 internal  exons; and (d) 238 
terminal exons  from  the 238 multi-exon  genes of the learning set 9. Histograms  (continuous hes) were  derived with 
a bin size of 300 bp in (a), and 25 bp in (b), (c), (d). The broken line in (a) shows a geometric (exponential) distri- 
bution with parameters derived from the  mean of the intron lengths;  broken lines in (b), (c) and (d) are  the smoothed 
empirical distributions of exon lengths used by GENSCAN (details given  by Burge, 1997). Note  different horizontal 
and vertical scales are used in (a), (b), (c), (d) and that multimodality in (b) and  (d) may, in part, reflect relatively 
small sample sizes. 

or short exons, and this idea is given substantial 
support by the  observed distribution of internal 
exon lengths (Figure 4(c)), which shows  a pro- 
nounced  peak  at around 120 to 150 nucleotides, 
with few internal exons more  than 300 bp or less 
than 50 bp in length. (See also Hawkins (1988) for 
an  extensive discussion of exon and intron length 
distributions.) Initial (Figme 4@)) and terminal 
(Figure 4(d)) exons a h  harre substantially peaked 
distributions (possibly multi-modal) but do not ex- 
hibit such a steep dropoff in density after 300 bp, 
suggesting that somewhat different constraints 
may exist for splicing of exons at or near the  ends 
Of the pre-mRNA. Taking these factors into ac- 
count, we use %parate empirically derived length 
distribution functions for initial, internal, and term- 
inal exolls (Figure 4) and for single-exon  genes. 
Substantial differences in exon length distributions 
were not observed  between the C + G compo- 
sitional groups (data not  shown). 

In contrast to exons, intron length does not  ap- 
pear to be critical to splicing in most  cases,  e.g. for 
rabbit P-globin, intron length was observed to  be 
unimportant for splicing provided that a  certain 
minimum tlueshoId of perhaps 70 to 80 
nucleotides was exceeded  (Wieringa et al., 1984). 
The  observed  distribution of intron lengths 
(Figure 4(a)) tends to support this idea: no  introns 
less than 65 bp  were observed,  but  above this size 
the  distribution  appears to be  approximately geo- 
metric  (exponential), consistent with the absence of 
significant functional constraints on intron length. 
Consistent with the results of Duret et n l .  (legs), 
dramatic differences were  observed  in intron (and 
intergenic)  lengths  between the four C + G compo- 
sitional groups (Table 3): introns in (A + T-rich) 
group 1 genes  averaged 2069 bp, almost four times 
the  value o f  516 bp observed in  very C + G-rich 
genes (group IV). Thus, intron and intergenic 
lengths are modeled as geometric distributions 



with parameter estimated for  each C + C proup 
separately. For the YUTR and 3'UTR states, JVE LISE 
geometric distributions with me'ln values o f  769 
and 457 bp, respectively, derived from comparison 
of the "prim-transcript" and "CDS" fcatures o f  the 
GcnBank files in 2'. The polyA-signal a n d  pru~no- 
ter . model lengths are discussed later. The only 
other feature of note is that exon lengths must be 
consistent with the phases of adjacent introns. To 
account for this,  exon  lengths are gencratecl i n  tivo 
steps: first, the number of complete codons is pn- 
erated from the appropriate length distribution; 
then the  appropriate number (0, 1 or 2) of bp is 
added to  each end to  account for the phases of the 
preceding  and  subsequent states. For example, if 
the number of complete  codons, generated for an 
initial exon is c and the phase of the subsequent in- 
tron is i, then  the  total length of the exon is: 
I = 3c + i. 

Signal models 

Numerous models of biological signal  sequences 
such as donor  and acceptor splice sites, promoters, 
etc. have been constructed in  the  past  ten  years  or 
so. One of the earliest and  most influential ap- 
proaches has been  the  weight  matrix method 
( w " )  introduced  by  Staden  (1984), in  which  the 
frequency of each nucleotide j at  each position i 
of a s i p 1  of length n is derived from  a collection 
of aligned  si sequences and  the  product 
P { X }  = I37= piz E used to estimate  the  probability 
of generating a particular sequence, X = .xl, 

x2,  . . . . , x,. A generalization of this method,  termed 
weight  array model (WAM), was applied  by 
Zhang & Marr (1993), in Whi& dependencies be- 
tween adjacent positions are  considered. In this 
model, the probability, of generating  a  particular 
sequence is: P r [ X ]  = px,  rIr!2 where pji- I,'' is 
the conditional probability of generating  nucleotide 
X, at position i, given nucleotide Xi at position 
i - 1 (which is estimated from the  corresponding 
conditional frequency  in the set of aligned  signal 
sequences). Of  course, higher-order WAM models 
capturing second-order (triplet) or  third-order (tet- 
ranucleotide) dependencies  in signal  sequences 
could be used in principle, but typically there is in- 
sufficient data available to estimate the increased 
number of parameters in such models. Here, 
W" models are used  for certain types of signals, 
a modified WAM model is  derived for acceptor 
splice sites, and  a new  model, termed Maximal  De- 
pendence Decomposition (MDD), is introduced  to 
model donor splice sites. 

Transcriptional and translational signals 

Polyadenylation signals are  modeled as a 6 bp 
WMM (consensus: AXTAAA). A 12 by WMM 
model, beginning 6 bp prior to the  initiation 
codon, is used tor the translation initiation (Kozak) 
sigml. I n  both cases, the WMM probabilities 
wcw estimated using the GenBank annotated 

'$ 

"polyA-signal" and "CDS" features from se- f 
quenccs of Y .  (Sirniter models of these signals 
have  been  used by others, e.g. Cuigd r f  oi. (1992), 
Snyder & Stormo (1995).) For the translation ter- t 

mination signal, one of the three stop codon..; is ' 
generated (according to its observed frequency in ' 
9') and the next  three nucleotides are generated x -  
cording t o  a WMM. For promoters, we use a sin>- 
plified  model of what is undoubtedly an  extremely 
complex signal often involving combinatorial regu- 
lation. Our primary  goal was to construct a model ,, 

flexible  enough so that potential genes would not 
be  missed  simply  because  they  lacked a sequence -; 
similar to our preconceived notion of what  a pro- j- 
moter  should  look  like.  Since about 30% of eukary- $2 
otic promoters lack an apparent TATA signal, we y 2  
use a split model  in  which a TATA-containing pro- 'z 
moter is generated  with probability 0.7 and a 2; 
TATA-less  promoter  with probability 0.3. The 2 
TATA-containing  promoter is modeled  using a 3 
15 bp TATA-box W" and  an 8 bp cap site -2; 
WMM, both  borrowed  from  Bucher (1990). The)g 
length between the WMMs is generated  uniformly 
from the range of 14 to 20 nucleotides, correspond-: 
ing  to  a TATA --f cap  site distance of 30 to 36 bp,' 
from the first T of the TATA-box matrix to the cap 
site (start of transcription). Intervening bases ares$ 
generated  according to an intergenic-null model, 4 
i.e. independently generated from intergenic base 3 
.frequencies. At present, TATArless promoters are 2 
modeled simply as intergenic-n$l regions of  40 bp .%$ 
in length. In the future, incorporation of improved 
promoter models, e.g. perhaps along the lines of 8 
Prestridge (1995), will probably lead to  more accu- ,?$ 
rate  promoter  recognition . ..* -? 

;R 

,x. 
.' 

Splice signals 

The  donor and acceptor splice signals are prob- 
ably  the  most critical signals for accurate exon pre-. 
diction since the vast majority of exons are  internal 
exons and therefore begin with an acceptor site 
and  end  with  a  donor site.  Most  previous probabil- 
istic models of these sites have  assumed either 
dependence between positions, e.g. the WMM 
model.of Staden (1984) or dependencies between 
adjacent positions only, e.g. the WAM model of 
Zhang & Marr (1993). However,  we have observed 
highly sigruficant dependenaes between non-adja- 
cent as well as adjacent positions in the donor 
splice signal (see below), which are  not  adequately 
accounted for by such models and which  likely re- 
late  to  details of donor splice site recognition b 
U1 snRNP and possibly other factors.  The  conse 
sus region of the donor splice site comprises th 
last 3 bp of the exon  (positions - 3 to - 1) and th 
first 6 bp of the succeeding intron (positions 
through 6), with the almost invariant GT dinucleo- 
tide  occuring at p s i t i c m s  1,2: consensus 
nucleotides are shown in Figure 2. We have fo- 
cused on  the dependencies ktwtyn the consensus 
indicator variable, C; (1 if the nucleotide at position 

<$ 
d 

i matches thc consemms at i, 0 otherwise) k ~ d  the 
. .  
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- 
i con i :  -3 - 2  -1 +3 +4 +5 fh Sum 
- 
-3 c / a  - 61 3' 1'4.9 5.8 20.2' 1 I..? 1S.U' 131.8' 
-2 ..z 115.6' - 40.5' 20.3' 57.5' 59 .7- 42.9' 336.5* 
-1 G 15.4 S2.S' - 13.0 61.5* 51.4' 96.6' 310.8' 

+3 8.6  17.5'  13,l - 19.3' 1 .8 0.1 60.5' 
tl A 56.0' 62.1' 64.1' - 56.8' 0.2 260.9' 
+5 G 21.6 60.1' 41.9* 93.6'  146.6* - 33.6'  387.3' 
+6 t 'I) -P 40.7'  103.8' 26.S  17.8'  32.6' - 243.6' -.- 
ci and X, are defined in the tat. The  last three exon bp  and first six intron b p  were  extracted from each of the 12% donor  splice 

s i t s  in the  Ieaming set: positions in this site are  labeled -3 through -1, +1 through +6. The invariant psitions +1, f2  (always G, 
T 5 this set) are  omitted. The consensus nucleotide(s) at each  position are  shown in the  second  column:  nucleotides  with  frequency 
*eater than 50% are uppexase (see Figure 2). For each  pair of distinct  positions {i, jl, a 2 by 4 contingency  table was constructed 
for the  indicator  variable C, (1 if the nucleotide  at  position i matches the consensus, 0 otherwise) imus the variable X, identifying 
the  nucleotide  at  position j ,  and the value of the x' statistic for each such table was calculated. Those values exceeding 16.3 (corre- 
sponding to P < 0.001, 3 d o  am indicated ~5th an asterisk.  The  last  column in the  Table lists the sum of the  values in each row: this 
value is a measure of f ie  dependence  behveen C, and  the vector X('' of the  nucleotides at  the six remaining  positions. All values 
exceeded 42.3 (P < 0.001, 18 df) and are  therefore  indicated with an  asterisk 

nucleotide indicator Xi identifyin0 the  nucleotide 
at position j .  Table 4 shows the  fstatistics  for the 
variable C j  aersus Xi for all pairs i, j with i # j in 
the set of donor sites from the genes  of the  learning 
set (positions +1 and +2 are omitted since they do 
not exhibit variability in this data set). Strikingly, 
almost three-quarters (31/42) of the i, j pairs exhi- 
bit significant x' values even at the relatively strin- 
gent level of P c 0.001 indicating a great deal of 
dependence  between positions in the donor splice 
site.  (The stringent P-value  cutoff was used to com- 
pensate for the effect'of multiple comparisons.) It is 
also noteworthy and perhaps surprising that  many 
non-adjacent pairs of positions as well as most ad- 
jacent pairs exhibit sipficant dependence, e.g. 
positions -1 and +6, separated by  five intervening 
nucleotides, exhibit the extremely  high x' values 
of 103.8 for C, versus X-, and 96.6 for C-, uersus 
X,. In order to account  for such dependencies in a 
natural way, we introduce a new  model-building 
procedure,  described next. 

Maxima[ Dependence Decomposition (MDD) 

The  goal of the MDD procedure is to generate, 
from an aligned set of signal sequences of moder- 
ate to large size (i.e. at ieast several hundred or 
more sequences), a model  which captures the  most 
significant dependencies between positions (allow- 
ing for non-adjacent as well as adjacent dependen- 
cies), essentially by replacing unconditional WMM 
probabilities by appropriate conditional probabil- 
ities provided that sufficient data is available to do 
SO reliably. Given a data set D consisting of N 
aligned sequences of length k, the  first step is to as- 
sign a C O ~ S ~ I ' I S U S  nucleotide or nucleotides at each 
position. Then, for each pair of positions, the x' 
statistic is calculated for Ci uersus X i  (as defined 
above) for each i, j pair with i # j. If no significant 
dependencies are detected (for  an appropriate P- 
i'alue), then a simple WMM should be sufficient. I f  
Significant dependencies are detected, but they are 

exclusively or predominantly  between adjacent 
positions, then a WAM model may  be  appropriate. 
If, however,  there  are  strong dependencies between 
non-adjacent as well as adjacent positions, then  we 
proceed as follows. (1) Caldate,  for each position 
i, the sum Si = xi + x2(Ci,Xj) (the row s w  in 
Table 4), which is a measwe of the amount of de- 
pendence  between  the variable Ci and the 
nucleotides at the  remaining positions of the site. 
(2) Choose the value i, such that Si, is maximal 
and  partition D into two subsets: Di, all  sequences 
which have  the consensus nucleotide(s) at position 
i,; and D; all sequences which do not. Now repeat 
steps (1) and (2) on each of the subsets, Di, and Dc 
and  on  subsets thereof, and so on, yielding a 
binary  subdivision "tree" with (at most) k - 1 
levels (see Figure 2). This process of subdivision is 
carried out successively on each branch of the tree 
until one of the following three conditions occurs: 
(1) the (k - 1)th level of the tree is reached (so that 
no  further subdivision is possible); (2) no signifi- 
cant  dependencies between positions in a subset 
are detected (so that further subdivision  is  not indi- 
cated); or (3) the  number of sequences  remaining 
in a subset becomes so smalI that reliable WMM 
frequencies could  not  be  determined after further 
subdivision. Finally, separate WMM models are 
derivecl for each  subset of the tree, and these are 
combined to form a composite  model as described 
below. 

Figure 2 illustrntes the MDD procedure applied 
to the set o f  1254 donor splice sites from Y. The in- 
itial subdivision is made according to the COIISCII- 

SLIS (G) at position 5 of the donor signal (see 
Table A ) ,  resulting in subsets C5 and H, (13 ~nenn- 
ing A ,  C or U) containing 1057 and 197 intron sc- 
~ L W I I C ~ S ,  respectively. We consider the number 175 
as a ~~1s;onable  ~ninimum subset size (correspond- 
ing t o  n parameter estimation error of typically less 
than 3 ' % ,  even  for  base frequencies as low as 
lO%l), so the  subset H ,  is not subdivided. The sub- 
set G, is sufficicntly large, and exhibits significant 



dependence between  positions (data not shown), 
XI i t  is further subdivided according to the consen- 
‘;LIS (G) a t  position -1, yielding subsets G,G-, and 
G:H-,,  and so on. The composite MDD model Fcx 
seneration of donor splice  site sequences is then as 
iollows. (0)  The (invariant) nucleotides X,  and X, 
are generated. (1) X; is generated from the original 
\VMM for all donor sites combined. (221) If X5 # G, 
thcn h e  (conditional) WAMM model for subset H5 
is used to generate the nucleotides a t  the remainhlg 
positions in  the donor site. (2b) If X, = G, then X-, 
is generated from the (conditional) WMM model 
for  the subset G,. (35) If (X, = C and) X-, # G, 
then the WMM model  for subset GsH-, is used. 
(3b) If (X5 = G and) X-, = G, X - 2  is generated 
from the model  for G5G-,; and so on, until  the  en- 
tire 9 bp sequence has been generated. Biological 
factors  related to the MDD model are addressed in 
the Discussion. 

Acceptor splice site model 

The first step in the MDD procedure was also 
applied to the 1254 acceptor sites  from  the  multi- 
exon  genes of 9, but dependencies between  pos- 
itions were found  to be much weaker  than for 
donor sites and those that existed were  mostly b e  
tween adjacent positions (data  not  shown). There- 
fore, we apply  a modified WAM method  to  model 
this signal.  Specifically, bases -20 to +3 relative to 
the intron/exon junction, encompassing  the pyri- 
midinerich region and the acceptor splice  site it- 
self, are modeled by  a first-order WAM model as 
by Zhang & Marr (1993). The branch point region 
is notoriously difficult to .model,  since  even  the 
most degenerate branch  point  consensus is present 
in only a fraction of acceptor sequences. For 
example, ryRAY was present in the  appropriate 
region [ - 40, -211 in only 30% of acceptor se- 
quences in our data set; similarly low  frequencies 
of branch point consensus sequences have  been  ob- 
served previously, e.g. Harris & Senapathy (1990). 
To model this region, we introduce  a ‘:windowed 
second-order WAM model“. (WWAM), in which 
nucleotides are generated conditional  on  the 
nucleotides at the previous two positions. In order 
to have sufficient data to estimate these  conditional 
probabilities reliably, we averaged the conditional 
frequencies  over a  span of five positions, i.e. the 
WAM entries for position i are  formed  by  aver- 
aging the appropriate conditional frequencies at 
positions i - 2, i - 1, i, i f  1 and i + 2. This 
model captures  the weak but  detectable  ten- 
dency toward YYY tiplets  as well as certain 
branch point-related triplets such as TGA, TAA, 
GAC, and AAC in this  region, without  requir- 
ing the occurrence of any  specific branch  point 
consensus sequence. 

Exon models, non-coding state models 

mined  for  hexamers ending a t  each of the 
codon positions, denoted c,, c2 c3, respecti 

most accurate compositional  discri 

genes is essentially equi 
scoring”.  plus “in-frame 
scribed  by Wu (19961, 
somewhat  better accuracy than 

fifth-order Markov m 
ities  derived from 
genes  in 2 ’ .  As for 
order  Markov mat 
of group I for use in sequenm cd 4 3 %  C + G. 

Reverse-strand states 
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;Iverse complementation. &x example, if  the  for- 
ward strand ternhation signal model generates 
he  triplets TAG, TAA a t 3  TG.4 Icith  probabilities 

pt and p 3 ,  respectively, then the  reverse  strand 
termmati011  rnodel will p ~ t ~ a t e  the  triplets CTA 
(inverted complement 01 TAG), TTA and TCA, 
with probabilities pl, y2 an3 p3 Equivalently, the 
&ward-strand model is used to generate a stretch 
o<.sequence, and then the inverse complement of 
&e sequence is taken. 

- .  . .  

. ,  . .- 
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