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We introduce a general probabilistic model of the gene structure of
human genomic sequences which incorporates descriptions of the basic
transcriptional, translational and splicing signals, as well as length distri-
.butions and compositional features of exons, introns and intergenic
regions. Distinct sets of model parameters are derived to account for the
many substantial differences in gene density and structure observed in
distinct C + G compositional regions of the human genome. In addition,
new models of the donor and acceptor splice signals are described which
capture potentially important dependencies between signal positions. The
model is applied to the problem of gene identification in a computer pro-
~ gram, GENSCAN, which identifies complete exon/intron structures of
genes in genomic DNA. Novel features of the program include the ca-
pacity to predict multiple genes in a sequence, to deal with partial as
well as complete genes, and to predict consistent sets of genes occurring
on either or both DNA strands. GENSCAN is shown to have substan-
tially higher accuracy than existing methods when tested on standardized
sets of human and vertebrate genes, with 75 to 80% of exons identified
exactly. The program is also capable of indicating fairly accurately the re-
liability of each predicted exon. Consistently high levels of accuracy are
observed for sequences of differing C + G content and for distinct groups

of vertebrates.
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Introduction junction with other methods) to help identify genes
' in newly sequenced regions.

Many early approaches to the problem focused

The problem of identifying genes in genomic
DNA sequences by computational methods has at-
tracted considerable research attention in recent
years. From one point of view, the problem is clo-
sely related to the fundamental biochemical issues
of specifying the precise sequence determinants of
transcription, translation and RNA splicing. On the
other hand, with the recent shift in the emphasis of
the Human Genome Project from physical map~
ping to intensive sequencing, the problem has
taken on significant practical importance, and com-
puter software for exon prediction is routinely
used by genome sequencing laboratories (in con-

on prediction of individual functional elements,
e.g. promoters, splice sites, coding regions, in iso-
lation (reviewed by Gelfand, 1995). More recently,
a number of approaches have been developed
which integrate multiple tvpes of information in-
cluding splice signal sensors, compositional prop-
erties of coding and non-coding DNA and in some
cases database homology searching in order to pre-
dict entire gene structures (sets of spliceable exons)
in genomic sequences. Some examples of such pro-
grams include:. FGENEH (Sclovyev ef al., 1994),
GENMARK (Borodovsky & Mclninch, 1993), Gene- *
ID (Guigé et al, 1992), Genie (Kulp et al., 1996),
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Table 1. Performance comparison for Burset/Guigé set of 570 vertebrate genes
A Comparison of GENSCAN with other gene prediction progranis

Accuracy per nucleotide Accuracy per exon
Program Sequences Sn Sp AC cC Sn Sp Avg. ME WE
GENSCAN 570 (8) 0.93 0.93 091 0.92 0.78 0.81 0.80 - 0.09 0.05
FGENEH 569 (22) 0.77 0.83 0.78 0.80 0.61 0.64 0.64 0.15 012
GenelD 570 (2) 0.63 0.81 0.67 0.65 0.44 0.46 0.45 0.28 0.24
Genie 570 (0) 0.76 0.77 072 n/a 0.55 048 0.51 0.17 0.33
GenlLang 570 30 0.72 0.79 0.69 0.71 0.51 0.52 0.52 0.21 0.22
Genelarser2 562 (0) 0.66 0.79 0.67 0.65 0.35 0.40 0.37 0.34 017
GRAIL2 570 (23) 0.72 087" 0.75 0.76 0.36 0.43 0.40 0.25 0.11
SORFIND 561 (0) 0.71 0.85 0.73 0.72 0.42 0.47 0.45 0.24 0.14
Xpound 570 (28) 0.61 0.87 0.68 0.69 0.15 0.18 0.17 033 0.13
GenelD+ 478 (1) 0.91 09 0.88 0.88 073 0.70 0.71 0.07 0.13
GeneParser3 478 (1) 0.86 0.91 0.36 0.85 0.56 0.58 0.57 0.14 0.09

B GENSCAN accuracy for sequences :grouped by C + G content and by organism

Accuracy per nucleotide Accuracy per exon
Subset Sequences Sn Sp AC cC Sn Sp Avg. ME WE
C+G <40 86 (3) 0.90 0.95 0.90 0.93 0.78 0.87 0.84 0.14 0.05
C+ G 40-50 220 (1) 0.94 0.92 091 0.9 0.80 0.82 0.82 0.08 0.05
C+G50-60 - 208 (4) 0.93 0.93 0.90 0.92 0.75 0.77 0.77 0.08 0.05
C+G>60 56 (0) 0.97 0.89 0.90 0.90 0.76 0.77 0.76 0.07 0.08
Primates 237 (1) 0.96 0.94 0.93 0.94 0.81 0.82 0.82 007 0.05
Rodents . 191 (4) 0.90 0.93 0.89 091 075 0.80 078 0.1 0.05
Non-mam. Vert. 72(2) 0.93 0.93 0% - 093 0.81 0.85 084 0.11 0.06

A, For each sequence in the test set of 570 vertebrate sequences constructed by Burset & Guigé (1996), the forward-strand exons in
the optimal GENSCAN parse of the sequence were compared to the annotated exons (GenBank “CD5" key). The standard measures
of predictive accuracy per nucleotide and per exon (described below) were calculated for each sequence and averaged over alf
sequences for which they were defined. Resuits for all programs except GENSCAN and Genie are from Table 1 of Burset & Guigé
{1996); Genie results are from Kulp ef al. (1996). Recent versions of Genie have demonstrated substantial improvements in accuracy
over that given here (M. G. Reese, personal communication). To calculate accuracy statistics, each nudleotide of a test sequence is
classified as predicted positive (PP) if it is in a predicted coding region or predicted negative (PN) otherwise, and also as actual posi-
tive (AP) if it is a coding nudeotide according to the annotation, or actual negative (AN) otherwise. These assignments are then com-
pared to calculate the number of true positives, TP = PPNAP (i.e. the number of nucleotides which are both predicted positives and

acmal posmve), false positives, FP = PPNAN; true negatives, TN = PNNAN; and false negatives, FN PNNAP. The following mea-
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and the Approximate Correlation,
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T2{AP PP AN PN

The rationale for each of these definitions is discussed by Burset & Guigé (1996). At the exon level, predicted exens (PP) are com-

pared to the actual exons (AP) from the annotation; true positives (TP) is the number of predicted exons which exactly match an

actual exon (i.e. both endpoints exactly correct). Exon-level sensmvxty (Sn) and specifidty (Sp) are then defined using the same for-

mulas as at the nucleotide level, and the average of Sn and Sp is calculated as an overall measure of accumcy in lieu of a correianon
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Figure 1. A diagram of GenBank sequence HSU47924 (accession no U47924, length 116,879 bp) is shown with anno-
tated coding exons (from the GenBank CDS features) in black, GENSCAN predicted exons in dark gray, and GRAIL
predicted exons in light gray. Exons on the forward strand are shown above the sequence line; on the reverse (comp-
lementary) strand, below the sequence line. GRAIL II was run through the email server {(grail@ornlgov}): final pre-
dicted exons of any quality are shown. Exon sizes and positions are to scale, except for initial, terminal and single-
exon genes, which have an added arrow-head or -tail (see key above) which causes them to appear slightly larger
than their true size. Since GRAIL does not indicate distinct exon types (initial versus internal versus terminal exons),
all GRAIL exons are shown as internal exons. Gene names for the six annotated genes in this region (CD4, Gene A,
Gene B, GNB3, I1SOT and TPI) are shown on the annotation line, immediately preceding the first coding exon of the
gene. The GENSCAN predicted genes are labeled GS1 to GS8 as they occur along the sequence.

accuracy have been demonstrated for GENSCAN
over existing programs, even those which use pro-
tein sequence homology information, and we have
shown that the program can be used to detect
novel genes even in sequences previously subjected
to intensive computational and experimental scru-
tiny.

In practice, several distinct types of computer
programs are often used to analyze a newly se-
quenced genomic region. The sequence may first
be screened for repetitive elements with a program
like CENSOR (Jurka ef al., 1996). Following this,
GENSCAN and/or other gene prediction pro-
grams could be run, and the predicted peptide

sequences searched against the protein sequence .

databases with BLASTP (Altschul et al., 1990) to
detect possible homologs. If a potential homolog

is detected, one might perhaps refine the predic-
tion by submitting the genomic region corre-
sponding to the predicted gene together with the
potential protein homolog to the program Pro-
crustes (Gelfand et al., 1996), which uses a
“spliced alignment” algorithm to match the geno-
mic sequence to the protein. Even in the absence
of a protein homolog, it may be possible to con-
firm the expression and precise 3" terminus of a
predicted gene using the database of Expressed
Sequence Tags (Boguski, 1995). Finally, a variety
of experimental approaches such as RT-PCR and
3’ RACE are typically used {see, e.g., Ansari-Lari
et al, 1996) to pinpoint precise exon/intron
boundaries and possible alternatively spliced
forms. At this stage, computational approaches
may also prove useful, eg. GENSCAN high
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5'/3' compensation effect

First, G_; is almost completely conserved (97%)
in Hg donor sites (those with a non-G nucleotide at
position + 3) versus 78% in G sites, suggesting that
absence of the G-C base-pair with Ul snRNA at
position +5 can be compensated for by a G-C
base-pair at position —1, with a virtually absolute

i—équirement for one of these two G-C base-pairs -

(only five of 1254 donor sites lacked both G5 and
G_;). Second, the Hs subset exhibits substantially
higher consensus matching at position -2
(A_p = 85% in Hg versus 56% in Gs), while the G;
subset exhibits stronger matching at positions +4
and +6. Similar compensation is also observed in
the GsG_, versus GsH_, comparison: the GsH_,
subset exhibits substantially higher consensus
matching at positions +6 (76% versus 42%), +4
(93% versus 70%) and +3 (100% R versus 93%). Yet
another example of compensation is observed in
the GsG_, A_; versus GsG_; B_, comparison, with
the GsG_,B_, subset exhibiting increased consensus
matching at positions +4 and +6, but somewhat
lower matching at position —3.

Adjacent base-pair effect

Hj splice sites have nearlv random (equal) usage
of the four nucleotides at position +6, strongly im-
plying that base-pairing with Ul at position +6
does not occur (or does not aid in donor recog-
nition) in the absence of a base-pair at position +5.
The almost random distribution of nucleotides at
positon -3 of the GsG_,B_, donor sites also
suggests that base-pairing with Ul snRNA at pos-
ition —3 does not occur or is of little import in the
absence of a base-pair at position —2.

ferred over A; at some step in splicing subsequent
to donor site sclection.

Methods

Sequence sets

The non-redundant sets of human single- and
multi-exon genes constructed by David Kulp and
Martin Reese (22 Aug., 1995) were used as a start-
ing point for database construction [ftp://
ftp.cse.ucsc.edu/pub/dna/genes]. These sets con-
sist of GenBank files, each containing a single
complete gene (at least ATG — stop, but often in-
cluding 5 and 3’ untranslated and flanking re-
gions) sequenced at the genomic level, which have
been culled of redundant or substantially similar
sequences using BLASTP (Altschul ef al., 1990). We
further cleaned these sets by removing genes with
CDS or exons annotated as putative or uncertain
(e.g. GenBank files HSALDC, HUMADHS), alter-
natively spliced genes (HSCALCAC, HSTCRT3D),
pseudogenes (e.g. HSAK3PS, HSGKP1), and genes
of viral origin (HBNLF1), resulting in a set of 428
sequences.. For festing purposes, we further re-
duced this set by removing all genes more than
25% identical at the amino add level to those of
the GeneParser test sets (Snyder & Stormo, 1995)
using the PROSET program (Brendel, 1992) with
default parameters. The set of 238 multi-exon
genes and 142 single-exon (intronless) genes re-
maining after this procedure are collectively re-
ferred to as the learning set, designated .# (gene
list available upon request). The total size of the set
is 2,580,965 bp: the multi-exon genes in % contain
a total of 1492 exons and 1254 introns.

All model parameters, e.g. state transition and
initial probabilities, splice site models, etc. were de-
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G, preference effect

Comparison of the relative usage of A versus G
at position +3 in the various subsets reveals sev-
eral interesting features. Perhaps surprisingly, G is
almost as frequent as A at position +3 (45% versus
49%) in the entire set of donor sites, despite the ex-
pected increased stability of an A-U versus G-U
base-pair at position +3. Only in subset Hs is a
dramatic preference for A over G at position +3
observed (81% versus 15%), suggesting that only in

the absence of the strong G-C base-pair at position .

+5 does the added binding energy of an A-U ver-
sus G- U base-pair at position +3 become critical to
donor site recognition by Ul snRNA. On the other

section, witrmh two notable exceptions: (1) the pro-
moter model, which was based on published
sources; and (2) the coding region model, for
which this set was supplemented with a set of
complete human ¢DNA sequences derived as fol-
lows. All complete human ¢cDNA sequences corre-
sponding to proteins of at least 100 amino acids in
length (the length minimum was imposed in order
to avoid inclusion of cDNA fragments) were ex-
tracted from GenBank Release 83 (June, 1994). This
set was then cleaned at the amino acid level using
PROSET as above both with respect to itself and
with respect to the GeneParser test sets (gene list
available upon request). This set was then com-
bined with the coding sequences from # to form a
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with parameter g estimated for each C+ G group
separately. For the 5UTR and 3'UTR states, we use
geometric distributions with mean values of 769
and 457 bp, respectively, derived from comparison
of the “prim_transcript” and “CDS" features of the
GenBank files in 2. The polyA_signal and promo-
ter ' model lengths are discussed later. The only
other feature of note is that exon lengths must be
consistent with the phases of adjacent introns. To
account for this, exon lengths are generated in two
steps: first, the number of complete codons is gen-
erated from the appropriate length distribution;
then the appropriate number (0, 1 or 2) of bp is
added to each end to account for the phases of the
preceding and subsequent states. For example, if
the number of complete codons- generated for an
initial exon is ¢ and the phase of the subsequent in-
tron is i, then the total length of the exon is:
I=3c+.i

Signal models

Numerous models of biological signal sequences
such as donor and acceptor splice sites, promoters,
etc. have been constructed in the past ten years or
s0. One of the earliest and most influential ap-
proaches has been the weight matrix method
(WMM) introduced by Staden (1984) in which the
frequency pi? of each nucleotide j at each position i
of a signal of length 7 is derived from a collection
of ahgned signal sequences and the product

=T7_,pY is used to estimate the probability
of generatmt7 a particular sequence, X =x,,
Xg, ...., X, A generalization of this method, termed
weight array model (WAM), was applied by
Zhang & Marr (1993), in which dependencies be-
tween adjacent positions are considered. In this
mode], the probablhr;/ of generating a particular
sequence is: Pr(X} = po T2, i1 | where p§,~ 17 is
the conditional probability of generating nucleotide
X, at position i, given nucleotide X; “at position
i ~1 {which is estimated from the correspondmg
conditional frequency in the set of aligned signal
sequences). Of course, higher-order WAM models
capturing second-order (triplet) or third-order (tet-
ranuclectide) dependencies in signal sequences
could be used in principle, but typically there is in-
sufficient data available to estimate the increased
number of parameters in such models. Here,
WMM models are used for certain types of signals,
a modified WAM model is derived for acceptor
splice sites, and a new model, termed Maximal De-
pendence Decomposition (MDD), is introduced to
model donor splice sites.

Transcriptional and translational signals

Polyadenylation signals are modeled as a 6bp
WMM  (consensus: AATAAA). A 12bp WMM
model, beginning 6bp prior to the initiation
codon, is used for the translation initiation (Kozak)
signal. In both cases, the WMM probabilities
were estimated using the GenBank annotated

“polyA_signal” and “CDS” features from se-
quences of . (Similer models of these signals
have been used by others, e.g. Guigd eof al. (1992),

Snyder & Stormo {1993).) For the translation ter-
mination signal, one of the three stop codons {s

generated (according to its observed frequency in
&) and the next three nucleotides are generated ac-
cording to a WMM. For promoters, we use a sim-
plified model of what is undoubtedly an extremely
complex signal often involving combinatorial regu-

lation. Our primary goal was to construct a model

flexible enough so that potential genes would not

be missed simply because they lacked a sequence

similar to our preconceived notion of what a pro
moter should look like. Since about 30% of eukary
otic promoters lack an apparent TATA signal, we
use a split model in which a TATA-containing pro
moter is generated with probability 0.7 and a
TATA-less promoter with probability 0.3. The
TATA-containing promoter is modeled using a
15bp TATA-box WMM and an 8bp cap Site
WMM, both borrowed from Bucher (1990). The 3

length between the WMMs is generated uniformly

from the range of 14 to 20 nucleotides, correspond-

ing to a TATA — cap site distance of 30 to 36 bp,*%
-from the first T of the TATA-box matrix to the cap

site (start of transcription). Intervening bases ar
generated according to an intergenic-null model, ¢

2
X
T‘.:J;.'
&
5:

i.e. independently generated from intergenic base i§

modeled simply as mtergemc—null regions of 40 bp
in length. In the future, incorporation of improve
promoter models, e.g. perhaps along the lines o
Prestridge (1995), will probably lead %o more accu- 3
rate promoter recognition.

Splice signals

The donor and acceptor splice signals are prob- £
ably the most critical signals for accurate exon pre—__
diction since the vast majority of exons are internal &
exons and therefore begin with an acceptor site 3

and end with a donor site. Most previous probabil-

istic models of these sites have assumed either in-3
the WMM \;{
model -of Staden (1984) or dependencies between 2
adjacent positions only, e.g. the WAM model of 3

dependence between positions, e.g.

Zhang & Marr (1993). However, we have observed
highly significant dependencies between non-adja

cent as well as adjacent positions in the donori

splice signal (see below), which are not adequately 3

accounted for by such models and which likely re-3

late to details of donor splice site recognition b
Ul snRNP and possibly other factors. The consen:

sus region of the donor splice site comprises the3®
last 3 bp of the exon (positions — 3 to — 1) and the @
of the succeeding intron (positions 1g
through 6), with the almost invariant GT dinucleo-%
consensus §

first 6 bp

tide occuring at positons 1,2 :
nucleotides are shown in Figure 2. We have fo-g

cused on the dependencies between the consensus
indicator variable, C; (1 if the nucleotide at position ¥
{ matches the consensus at i, O otherwise) and the g

frequencies. At present, TATA-less promoters are %
=
2
2]
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dependence between positions (data not shown),
so it is further subdivided according to the consen-
sus (G) at position —1, yielding subsets GsG_, and
GsH_,, and so on. The composite MDD model for
generation of donor splice site sequences is then as
follows. (0) The (invariant) nucleotides X, and X,
are generated. (1) Xs is generated from the original
WMM for all donor sites combined. (2a) If X5 # G,
then the (conditional) WMM model for subset Hs
is used to generate the nucleotides at the remaining
positions in the donor site. (2b) If X5 = G, then X_,
is generated from the (conditional) WMM model
for the subset Gs. (3a) If (Xs=G and) X_, #G,
then the WMM model for subset GsH_; is used.
(3b) If (X5=0C and) X_; =G, X_; is generated
from the model for G;G_,; and so on, until the en-
tire 9 bp sequence has been generated. Biological
factors related to the MDD model are addressed in
the Discussion.

Acceptor splice site model

The first step in the MDD procedure was also

Exon models, non-coding state models

Coding portions of exons are modeled using angs
inhomogeneous  3-periodic  fifth-order Markoy@
model as by Borodovsky & Mcininch (1993); see
also Gelfand (1995). In this approach, separatdge
fifth-order Markov transition matrices are deterX&
mined for hexamers ending at each of the thre
codon positions, denoted ¢;, ¢ €3, rcspechvely
exons are modeled using the matrices ¢, ¢y, ¢;
succession to generate each codon. These transitio
probabilities were derived from the set %’ of com
plete coding sequences described previously. In r
gard to this choice of coding sequence model, w
note that Fickett & Tung (1992) have shown tha
frame-specific hexamer measures are generally theg
most accurate composmonal discriminator of cod 3
ing versus noncoding regions. We found, as havel
others, that A + T-rich genes are often not we
predicted using such bulk hexamer-derived pa
ameters. Accordingly, a separate set of fifth-ords
Markov transition matrices was derived for C +
composition group I regions (<43% C + G). Spec'
cally, the coding sequences of all group 1 gen

from % were combined with all cDNAs of <43%%% '
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