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Hidden Markov Models (HMMs) are applied to the problems of statistical modeling,
database searching and multiple sequence alignment of protein families and protein
domains. These methods are demonstrated on the globin family, the protein kinase catalytic
domain, and the EF-hand calcium binding motif. In each case the parameters of an HMM
are estimated from a training set of unaligned sequences. After the HMM is built, it is used
to obtain a multiple alignment of all the training sequences. It is also used to search the
SWISS-PROT 22 database for other sequences. that are members of the given protein
family, or contain the given domain. The HMM produces multiple alignments of good
quality that agree closely with the alignments produced by programs that incorporate three-
dimensional structural information. When employed in discrimination tests (by examining
how closely the sequences in a database fit the globin, kinase and EF-hand HMMs), the
HMM is able to distinguish members of these families from non-members with a high degree -
of accuracy. Both the HMM and PROFILESEARCH (a technique used to search for
relationships between a protein sequenice and multiply aligned sequences) perform better in
these tests than PROSITE (a dictionary of sites and patterns in proteins). The HMM
appears to have a slight advantage over PROFILESEARCH in terms of lower rates of false
negatives and false positives, even though the HMM is trained using only unaligned
sequences, whereas PROFILESEARCH requires aligned training sequences. Our results
suggest the presence of an EF-hand calcium binding motif in a highly conserved and
evolutionary preserved putative intracellular region of 155 residues in the a-1 subunit of
L-type caleium channels which play an important role in excitation-contraction coupling.
This region has been suggested to contain the functional domains that are typical or
essential for all L-type calcium channels regardless of whether they ecouple to ryanodine
receptors, conduct ions or both.
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1. Introduction

The rate of generation of sequence data in recent
years provides abundant opportunities for the
development of new approaches to problems in
computational biology. In this paper, we apply
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1 Author to whom all correspondence should be
addressed.

___§ Abbreviations used: HMM, hidden Markov models;

EM, Expectation-Maximization; ML. maximum
likelihood; MAP, maximum a posteriori; NLL-score,
negative log likelihood score.

hidden Markov models {HMMs§) to the problems of
statistical modeling, database searching, and
multiple alignment of protein families and protein
domains. To demonstrate the method, we examine
three protein families. Each family consists of a set
of proteins that have the same overall three-dimen-
sional structure but widely divergent sequences.
Features of the sequences that are determinants of
folding, structure and function should be present as
conserved elements in the family of sequences. We
consider the globins, whole proteins ranging in
length from 130 to 170 residues (with few excep-
tions) and two domains, the protein kinase catalytic
domain (250 to 300 residues) and the EF-hand
calcium-binding motif (29 residuesy. The same
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approach can be used to model families of nueleic
acid sequences as well (Krogh et al., 1993b).

A hidden Markov model {(Rabiner, 1989) describes
a series of observations by a “‘hidden’ stochastic
process, a Markov process. In speech recognition,
where HMMs have been used extensively, the
observations are sounds forming a word, and a
model is one that by its hidden random process
generates these sounds with high probability. Every
possible sound sequence can be generated by the
model with some probability. Thus, the model
defines a probability distribution over possible
sound sequences. A good word model would assign
high probability to all sound sequences that are
likely utterances of the word it modeis. and low
probability to any other sequence. In this paper we
propose an HMM similar to the ones used in speech
recognition to model protein families such as globins
and kinases. In speech recognition. the “alphabet™
from which words are constructed could be the set
of phonemes valid for a particular language: in
protein modeling. the alphabet we use is the 20
amino acids from which protein molecules are
constructed. Where the observations in speech
recognition are words. or strings of phonemes. in
protein modeling the observations are strings of
amino acids forming the primary sequence of a
protein. A model for a set of proteins is one that
assigns high probability to the sequences in that
particular set.

The HMM we build identifies a set of positions
that describe the (more or less) conserved first-order
structure in the sequences from a given family of
proteins. In biological terms, this corresponds to
identifving the core elements of homologous
molecules. The model provides additional informa-
tion, such as the probability of initiating an inser-
tion at any position in the model and the
probability of extending it. The structure of the
modei is similar to that of a profile (Waterman &
Perlwitz, 1986: Barton & Sternberg, 1990: Gribskov
et al., 1990: Bowie ef al.. 1991: Liithy et al.. 1991).
but slightly more general. Once we have built the
model from unaligned sequences. we can generate a
multiple alignment of the sequences using a
dynamic programming method. By employing it for
database searching. the model can be used to dis-
criminate sequences that belong to a given family
from non-members. Finally, we can study the model
we have found directly, and see what it reveals
about the common structure underlying the various
sequences in the family.

Our method of multiple alignment differs quite
markedly from conventional techniques. which are
usually based on pairwise alignments generated by
dyramic programming. schemes (Waterman, 1989:
Feng & Doclittle, 1987; Barton, 1990: Subbiah &
Harrison, 1989). The zlignments produced by these
methods often depend strongly on the particular
values of the parameters required by the method. in
particular the gap penalties (Vingron & Argos.
1991). Furthermore. a given set of sequences is
likely to possess both fairly conserved regions and

highly variable regions, vet conventional global
methods assign identical penalties for all regions of
the sequences. Substitutions, insertions, or deletions
in a region of high conservation should ideally be
penalized more than in a variable region, and some -
kinds of substitutions should be penalized differ-
ently in one position compared to another. That is
one of the motivations for the present work. The
statistical model we propose corresponds to multiple
alignment with variable, position-dependent gap
penalties, Furthermore, these penalties are in large
part learned from the data itself. Essentially, we
build a statistical model during the process of
multiple alignment. rather than leaving this as a
separate task to be done after the alignment is
completed. We believe the model should guide the
alignment as much as the alignment determines the
model.

We are not the first group to employ hidden
Markov models in computational biology. Lander &
Green (1987) used hidden Markov models in the
construction of genetic linkage maps. Other work
emploved HMMs to distinguish coding from non-
coding regions in DNA (Churchill, 1989). Later,
simple HMMs were used in conjunction with the EM
algorithm to model certain protein-binding sites in
DNA (Lawrence & Reilly, 1990; Cardon & Stormeo,
1992) and. more recently. to model the N-caps and
C-caps of alpha helices in proteins (D. Morris,
unpublished resuits). These applications of HMMs
and the EM (Expectation-Maximization) algorithm,
including our own. presage a more widespread use of
this technique in computational biology. During the
time that we have been developing this approach.

‘several related efforts have come to our attention.

One is that of White. Stultz and Smith (White et al..
1991: Stultz ef al.. 1993), who use HMMs to model
protein superfamilies. This work is more ambitious
than our own. since superfamilies are harder to
characterize than families. Tt is not yet clear how
successful their work has been since no results are
reported for sequences not in the training set. If
there are weaknesses in their method. it is possible
that these are due to the use of handerafted models
and reliance on prealigned data for parameter esti-
mation. Tn contrast. our models have a simple
regular structure. and we are able to estimate all the
parameters of these models. including the size of the
model directly from unaligned training sequences.
Interestingly enough. they independently propose
an alternate HMM state structure similar to ourst
in section 6.3 of their paper (White et al.. 1991).
where they discuss the relationship of their work to
Bowie and co-workers (Bowie et al., 1991), but they
do not pursue this further. It is possible that the
type of models we use may work better for charac-
terizing superfamilies than those investigated by
White et al. However. it is more likely that they are
too simple. and that richer and more varied state

t Instead of using delete states. they have direct
transitions between each pair of match states m; and m;
with § {j.
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(g) Initial model, local minima, and choice of model length

As mentioned in section {b), above, when estimating
the model from the training sequences, the EM salgorithm
does not guarantee convergence to the best model. It is
besically a steepest-descent-type algorithm that climbs
the nearest peak (local maximum) of the likelihood func-
tion (or the posterior probability in MAP estimation).
Since finding the globally optimal model seems to be &
difficult optimization problem in general (Abe &
Warmuth, 1990), we have experimented with various
heuristic methods to improve the performance of the
method.

Probably the best method is to give the model 2 hint if
something is already known about the sequences, which is
often the case. A good starting point makes it much more
likely that the nearest peak is at least close to optimal.
This is done by setting the probabilities in the initial
model to values reflecting that knowledge. If, for instance,
an alignment of some of the sequences is available, it is
straightforward to translate that into a model by simply
caleulating the relative frequency of the amino acids and
the transition frequencies in each position, as in the
profile method (Gribskov et al., 1990).

It is of course even more interesting if the model can be
found from a fabula rase, i.e. using no knowledge about
the sequences. For that we have used an initial model
where all equivalent probabilities are the same, i.e.
F (my,,|m,} is independent of the position & in the
model, and similarly for all other transition probabilities,
and 2(zim,) is also independent of k. To avoid the
smaller local maxima, noise is added to the model during
the iteration before each re-estimation. Initially quite a
lot of noise is added, but over 10 iterations the noise is
decreased linearly to zero. Since noise is added directly to
‘the model, it is not like the usual implementation of
simulated annealing, but the principle is the same. The
“annealing schedule” is presently rather arbitrary, but it
does seem to give reasonable resultst if it is applied
several times, and the best of the models found is used as
the final model. :

It is important that the best model be selected, since
suboptimal models do produce inferior alignments in
general. However, when studying alignments from sub-
optimal globin models, we noted that they tend to align
some regions well, occasionally getting better alignments
in those regions than the best overall model found, while
in other regions they are completely incorrect. This leaves
open the intriguing possibility of combining the best
solutions found for different regions into a new overall
best model. We have not yet explored this possibility.

The length of the mode] is also a crucial parameter that
needs to be chosen a priori. However, we have developed
a simple heuristic that selects a good model length, and
even helps in the problem of local maxima. The heuristic
is this: after learning, if more than a fraction} y, of the
paths of the sequences choose d,, the delete state at
position k, that position is removed from the model.
Similarly, if more than a fraction y;,, make insertions at
position k (in state i,), 2 number of new positions equal to
the average number of insertions-made at that position
are inserted into the model after position k. After these

f An alternate method that also appears to give good
results has been developed by Baldi et al. (Baldi et al..
1993; Baldi & Chauvin, 1993). This method uses
stochastic gradient descent in place of the EM method,
which may help in avoiding local minima.

1 Currently we choose y,,; and y,,, each to be 1/2.

changes in the model, it is retrained, and this cycle is
repeated until no more changes are needed. We call this
“model surgery”. ’

(h) Over-fitting and M AP estimation

A model with too many free parameters cannot be
estimated well from a relatively small data set of training
sequences. If we try to estimate such a model, we run into
the problem of overfitting, in which the model fits the
training sequences very well, but gives a poor fit to
related (test) sequences that were not included in the
training set. We say that the model does not “generalize”
well to test sequences. This phenomenon has been .well
documented in statistics and machine learning {see e.g.
Geman e al., 1992; Berger, 1985). One way to deal with
this problem is to control the effective number of free
parameters in the model by using prior information. This
can be accomplished with MAP estimation. Parameters
that we assume (via our prior distribution on models) can
be well-estimated a priori in effect become less adaptive,
because.it takes a lot of data to override our prior beliefs
about them, whereas those ebout which we have only
weak prior knowledge are estimated in almost the same
manner as in maximum likelihood estimation. In this
way, the model can have a very large number of para-
meters, but a much smalier number of “effectively free”
parameters. To make MAP estimation practical, we use
Dirichlet distributions as priors. The details of the method
are described elsewhere {Krogh ef al., 1993a; Brown e al,,
1993).

3. Resuits
{a) Globin experiments

The modeling was first tested on the globins, a
large family of heme-containing proteins involved in
the storage and transport of oxygen that have
different oligomeric states and overall architecture
{for a review see Dickerson & Geis (1983)).
Hemoglobins are tetramers composed of two «
chains and two other subunits (usually 8, ¥, 5 or 8).
Myoglobin is a single chain, some insect globins are
present as dimers and some intracellular inverte-

- brate globins occur in large complexes of many

subunits.

Globin sequences were extracted from the
SWISS-PROT database (release 19) by searching
for the keyword ‘‘globin”. Eliminating the false
positives, resulted in 625 genuine globin sequences
of average length 145 amino acids. We left three
non-globins in the sample for illustrational purposes
giving a total of 628 sequences. The sample of
globins in the database is not the random sample a
statistician would prefer, but is perhaps one of the
best and largest collections of protein sequences
from a homologous family. Searching for the words
“alpha”, “beta’, “gamma’, “delta’, “theta’, and
“myoglobin” in the data file yielded 224 alpha, 199
beta, 16 gamma, 8 delta and 5 theta chains and 79
myoglobins, which adds up to 531 sequences. These
should naturally be considered minimum numbers.
but they give a good picture of how skewed the
sample is.

To test our method, we trained an HMM using
the method described in Methods sections (b) and
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{GLB_PARCA and GLB_TETPY) are protozoan,
whereas the other globins are metazoan. The
primary sequences of these globins are similar and
have little similarity with other eukaryotic globins.
Note also that both of these sequences are in the
test set.

(iit} Discovering subfamilies of globins

We also performed an experiment to automatically
discover subfamilies of globins using the method
described in Methods section (d). An HMM with ten
component HMMs was used. The initial lengths of
_the components were chosen randomly between 120
and 170, but were adjusted by model surgery during
training. We trained this HMM on all 628 globins
and then calculated the NLL-score for each
sequence for each of the ten component HMMs.
A sequence was classified as belonging to the cluster
represented by the component HMM that gave the
lowest NLL-score, i.e. the one giving the highest
probability to that sequence.t Three of these
clusters were empty and the remaining seven non-
empty ones represented chains from known globin
subfamilies:

Class 1. 233 sequences: principally all 2, a few {
(an a-type chain of mammalian embryonic hemo-
globin}, n/n’ (the counterpart of the & chain in major
early embryonic hemoglobin P), and 6-1 chains
(early erythrocyte a-like).

gss 2, 232 geavences.2imost all 8 a few ¢

indicates what fraction of the 400 training
sequences made that transition or used that parti-
cular amino acid. A broken line indicates that less
than 5%, of the sequences used that transition. (The
continued delete is mostly due to fragments that
have to make many deletions.) The histogram in a
match state shows the distribution of amino acids
that were matched to that state. The number in an
insert shows the average length of an insertion
beginning at that position.

For the amino acids the ordering proposed by
Taylor (1986) is used. Starting from the top, the
amino acids are medium-sized and non-polar, small
and medium polar (around G and P), medium sized
and polar (around K), large medium-polar (around .
F and Y), and finally below they are medium-large
and non-polar. There does seem to be some ten-
dency for the distributions to peak around neigh-
boring amino acids when using this ordering, as one
would expect. When one looks at the whole model,
regions that are highly conserved are also readily
distinguished from the more variable regions, both
as a function of the probability that a position is
skipped, and the entropy of the distribution of
amino acids at that position.

(b) Kinase experiments

Protein kinases are defined as enzymes that

{zgrifer a nhosyphata qrevn o sebhasnhgiadano-
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Figure 9. Scatter plot of NLL-score versus length for sequences in SWINS-PROT using the Kinase HMM.

\\ The general issue of estimating the humber of
false negatives and false positives when
distinguishing sequences belonging to a given family
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Figure 10. Histogram showing the number of sequences

with a certain Z-score relative to the kinase model.

from non-members is a complex one. In the case of

the globins. it is “relatively” straightforward since

it -is possible to identifyv all the globins in the data-
base by performing a keyword or title string search.
The situation for the kinase domain or the EF-hand
motif (see section (c) below) is less obvious and thus
more problematic. For instance, while a given pro-
tein mayv possess the sequence characteristics for
this motif or domain. functionally, the region may
not bind calcium or possess kinase activity. We
have attempted to address this complicated matter
as best we can as described below. However, we
stress that we do not feel able to give a definitive
answer as to the number of true false negatives and
true false positives in our kinase or EF-hand data-
base discrimination tests.

A list of potential protein kinases was created
from the union of sequences designated as being
kinases from four independent sources: our HMM,
PROSITE (a dictionary of sites and patterns in
proteins (Bairoch. 1992)), PROFTLESEARCH {a
technique used to search for relationships between a
protein sequence and multiply aligned sequences
{Gribskov ef al., 1990)) and a keyword search.

Two regions of the catalytic domain of eukaryotic
protein kinases have been used to build PROSITE
signature patterns. The first pattern corresponds to
an area believed to be involved in ATP binding
(PROSITE  entry PROTEIN_KINASE_ATP,
sequence motif [LIV]IG.G.[FYM][SG].V). There are
two signature patterns for the second region impor-
tant for catalytic activity: one specific for serine/



Hidden Markov Models

1515

Subdomgis
PROSITE
X-ray
Reray

1 CAPR=ALPRA

2 NEEM+

3 TIK

4 3PR)

5 RSR1-P

€M

3 PRE=ALPAA

S PFOGFR-R

9 Pas2

10 EILL

1 KCXI

12 INs.k

13 B5VK

14 EAK)

15 EGFL

16 ECn

17 OPYR)

is &Ly

19 COC2N5

2 R

23 KSR RIMN
24 RLSANOUSE
25 ARKBHUNAK
26 ARIRBOTIN
27 BIRISCNMG
28 CYGLARRMY
25 AIPARAT
30 ASPAKUIAR
31 MMPRLKUEAR
A2 ANPARCUSE
33 AMFRAT
M CTESIINPY
35 YPSFUYEAST
36 HSERRAY
37 WSERLNUNAT
A8 ARZVZVD
35 RE2.RS¥)2
30 ARIESTEL
41 KR2EBV
42 KAB2¥ACCY
43 KAB2.VALCC
44 JAMECOLI
45 PSP.ROUSE
96 MHONBACSE
47 FLIGMACSY
48 CALQAARIT
49 NULRPODAN
50 RUWAECOLL
5} DISANASYEY
32 XAFLVACCT
53 ULOTRCNV
54 XRAEACIIN
5% RRASECOLI
56 RGPRIOVIN
ST EGFR.CRICK
58 RRALECOLI
53 ROTRIAQAE
60 APCCUUNAR

1 13 2) n 4l 13 73 L}}

.......... a=]

ARARBLAG AL,
eare-nauo BBEB.BB......... 89BED. .BB. . .. ..DOBDEDS .-BAAA. .AA .4, .
Capeeans Il 22222..22 ..3333323.3988..88.%. .

<o FERT.RTLGTCSFCA VALVR. .HK. ... .

.. JFAAY . TLLCSGEFSE. VFQVE. .DP
.. FEOI .EEIGLCCFGQ.VFRAR. (KA. .. ..DG.K.

SYID EVVCQLAFAT VRRAL..EK. JT6.K. .

.. .FELL.KVLOQLSFGR.VFLVR. K¥erp. . D.......... S6.H..

]

E

HYARKIL .OKqh. .VV.%
. XYAVRRL.KVX. . .F5.G. .
L RYALRRV.RY. .. .-=.3 c TELRAE ...
. .TFAVKIL.SArX. V1.G L ENLDEVTe. ..
L LYANRVL.KKd. .. TLA. o caenens

. EX.TY.

... YSIL.KOIGSGESSK.VFQVL. .BE. ... .k - K= IYAIRYV.NLe...EA.D .. 4Q.T.L05. .

oo JFNFL.AVLGRGSZGR.VALAD. .RK... 5., .. TE. «.LYAIRIL .RRdv..V1.Q.. DD.D.VEC.........
L. ANLG ATLGSGAFGO . YYEAT. (AK. .. .. L L5 Maqutm RVAVERL %5, .. Th k.. S5 ERGA el a LR
TRV INATREV.RL....EL.D. «EAKFRQ.....
TET. o VYVVKAL RKD. . AA K., .. ... .. .FT.G.KER.
LD Kpuly. PEAIRRV PA.. .
. T1.Rgeaet RVAVKIV.NE. .. .5A.5
vor o FTIR.GALTPGSEGC . VFDSS. .KP. .. .. L P YP.Q..... AVIVRAG.WY....<T.5... JARLLLLRALL LD LB
... YTOL.QYIGEGAYGR.WSSAY. .DH. . -RK.T RVAIRR1.SP FE.X. JIRLLLLGF LR E
... FRRL.RVLGSCAFST. VYKGL. .¥1. . EG.ERvki..PVAIREL.RE....AT.5 . ceaves1LLDE. L. Lo AVY, KRSV LD,
JHTRQ.EVIGACEFSE. VYRCA. .LAL. .. L 5. RRev.  PYAIKTL.KA....BY.T... LAGI. . AG.QF..
EFG.QTICRGFFSE. VARCY. .WR BN m e DUAIKII.YRdq..FK.T... 18 {5 [ 579 { RO W PO
CYEIV.DTLGEGAFEK . VWECI. .DK., ... AVAVKIV.RE. . =a ... .. o IOV LEHL. .. LMELD.
SYTRI.ERIGECTYSV. VYRGR. . 0K, . .VYARKRI.KLe...5E.E. PR ETIA N % > NN SO
QLF .EELCRCARSY. VRRCV. LRV, | JEYAAKIT.NTK...XL.5... P 1.3 O 1N EADPS SN PO
. LALE .VRLGQGCFLE. VWAGT. WK . CRVAIKTL.KP....o=G. ..o .. TR.S.PEA.........F.L.RE..... Y 110} 4% (RPN S |
baanmeand ARLS  TRIGSCSFUT .VYRGR. .¥H, . SeVAVAIL KBV, F.RBE. ... AV LR KT,
-;;5;uzm.nv.w.cmcrcz.mcv..".. . . RVAVRSL.RD. . LARLLREQL. Q.
nx:w.SIIQ(LH.F.HLGAGUFSE.VIIEV. BN PO LTS PRI WVAVRSL.EQ.. .. A5.QL Q...

madleaw)SOFSVU AT ICACCFSE. VYCCR. AR, .. .. Lo TC.K. ... NYARKCL.DKR...RL.K... .MK.Q.GET... «.lal.RE......RIN..E5.LVarg.0...C..
Badleav)SOFSYN . RTICRGOFGE. VYGCR. (KA. . LT6.K.. ... RYANRCL.DRE.. AT .K... ceen RIRLAZLVENE.D.
nekrrropSSLEVY . AHLGEGRGSA. VILVR. . MR, . .1 SFRAARTY.YV.
mattrLISTSERIF ATIG-cmmen memeT. YR, SICALHAVERE. ...
PpgarTYSIESLL . TT-=EQF 0. VFAKT . .AY. . .LVAVERVaRR. .
-p‘prr}”le.ALVGSLS---.-LLGL .11 JLVAVERVRRK. .
mAIpslITIZSRLT. LSLRESSYLS . LATAR. .ORygitan. ... ..ot TG.RIRgo. VVAIKHV.EK. ...

. CWKAVOLLALL. . RGP
(B3P 15 TN
JLEV. LHLXC. LN
N1 LQAL... Qe

JLEFL DELCHOWYON YSKVL. . HR.....P
- ..FOQY RPINESDFSF . VYWVS. .5zp. . .F. .
. VREY.RRIGRGAFGT.VRQAY..LY. ... Q..
-TILL RELGQGSFGN. PYEGK. . AR, 2

JASY. .BR.GF....T...C...

ar...

oo LRH.RRLDV. .
LLLRHLNRLDY.

mprarredI6GSLL. TT--ECOF-Q.VFAKY. .AY. ... BN T S LVAVERVSAK ..
madpa il IZSALT  LSLRGSSNCE LATAR . .CRygital LT RENgR. VVAIRNY. R, . o LAE, BROV.,
maharblS82QQLF . AT G-~ s C - .VCALHAVRRE. . - ..LKI,.AR.DK. .

o TUSIRVFIRP
. RVILRDL.KBed, .GMS.
SRVILKDL.K¥nd..GMIT. ..
JKIAVRTADSY.. .VF.X. ..

¥G.E.
AR
-+ .Rdywlrqkk450R.%
B

F.L.GR...... IRA..Q3IKL....Cq. L.+
5 TUN & L A5 AP - R P

£a416ivv34SRFL RT-="~
LTINS AR
#Rei114445LLLY . ALL
addtp] Jmeen aarGAGTICN. Vouur. . N]
mdesrTqliTmaee —==G500Y6D.VQLIR. (EH. .
Baaesiien somemumessE . VYAWETAHF. .
AEUTSavI08==~= . =LLERCSTCA . VT=m=..AK....
e s1kyct 1AV IC ATLTSCE-ST.LYRVR. R0, . .. F
sesfhyet14VLIG, KTLYSCH-S! . LYRVR. .XE
mae i1V vmemeamea U VLSAS . L AG. .

I.LaSE......G5IraGEML.. .G .. 2.
ceel=Vo ARAGL AL LT

-, ==lrvedm]Ql. .GK,ATaodgQ.. ... .
t-L.3E. JIRFL Y159
R 2 LN . «ebel.SE.s .. JRFLLYLSTTL
«« LYALAEG LEperF - . ...FAL..LE.RL..

8 qlg1ivIBESLL . GELGS—=- ., . L.eweLRILAP..

mhaisvg. . LLGL.GTVG5G~ LoDR.. .. DK.Lmbqugc PYTIRRV.LY. . .

L .DK. +oRAATLAL.SL....GL.OvsssvykRItOE E . [EX
weasdrag 12LLLL . LVLOSPOSG~ . \..=meeeeF.PEYd. GV.D....n RN "

-eia.- Y5311, 15Leeem-1E. VLWL .

Mg IrgiISLVL)  EVCGVOva== . ~TEVI.

. mdngver JH4BTEA AVLGYCHIGR  VF-== .. e . Re

BEvazdsiH=er~ o===TCCYC . VFRID. AY. .. .. Taxiviear?5YS.C RVFLXAF.¥Er.. .KD.S..
W3 34173335 wm=wm ~RLOQUSFLE . Viiemm ..LD.R. IRVVEVARK.. . ~=.H.

S.ML.. .. 5e. %

o 1poiiglISTLEPIRIGE-SEZD, VYSAF .. «EeE...... TFFLARS. 5Ty, . TE.T. o AR
wadidree 27UARD . KV~~=GQSTCAVIRIN . 5N, . .66.5.. ... .DLFLARG, KDa24dD¥.T.
......... —vm, weneameene, ~=fCT..LA ~D.L..-...Q¥he==1 OEK...IE.E.

2 ———RKY.CQ-. .. GT.H. ...
v oo YG.Rpdape LF====L KH. .. .=~.C.. RG.S.FA-. . -
Cpapsmaiql?2Pl.Gpp. .. FFLERRR.PR...o=-Fuoo KG.Q.UShpregppTavt.LLIE, R
a¥ K5, WP S LC.G.VDH.........T.E.RR......CRL..OL.ES. .. ... &...

mpvrepHAIGVLYL LLLG= === VALCS. AV .
nabiqretd2ee—n, -==vV60SG= ===ATi. YA,
WpaarLtISIMRLYE  MELGR=EFGK EF~GR. . EF ..
Maglgpgitemm mmeeemeYSL. VEQER . KCoccomd










1518

Hidden Markov Models

g 7 =T

Subdomuia
FROSITE
B T T A ARARARAARARASAA ...
BoTdY e iiieiaieterttedsnaiseasesuese e ranartaetasnanesaebiannn F.FFFFFFFFFFFFFFF ...
1 CAPR=iLPHA -NTLCCT EY.LAPE..I1L, . <G-YEK...A VOWWALCVLIYENAL
2 VEEl EREGD.C. .EY.IAPE..VL4.. L=YOK...P.ADIFSLGITYFEAAARI.
L . STRATGT.L..QV.ASPE..QLF. . K. JA=YCK...E.VDIFALCLILAELL~
45 . RTFCCT.L.AY.¥APE. .¥VIR.... « .GRdtsvadpe 1 20EYSS. . . L. YORWSRCCLVYVILY
S RSR1-N YSFCET. V. (EY.AAPE.. oo G=BTH. ... ADVHSYCY L Kam e =
& M -« K. SDVWSLCCILYTATY.
T PRC-ILPHA P=1CK. ..5. VOWWAYGYLLYENLA .
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58 KKal.ECOLT RE.L
59 EDTRDAOAE
50 KPCGAURAR
A ( cont)
Fig. 11.

chosen from a visual inspection of a histogram of
Z-scores which indicated that 6:0 lay in a large gap
(see Fig. 10). If the Z-score cutoff is lowered to the
next largest gap (from Z-score 39 to 4:8) between
sequences 43 to 44, then these three viral sequences
{41 to 43) would also bg categorized as kinases by
the HMM.

Of the eight sequences (41, 51 to 53, 56 to 57. 59

ta S that woere naot olaceified se Irinacas hy Anre

comain is absent. Three (51 to 53) possess divergent
forms of many of the conserved regions and like 41
to 43, although thev are below our cutoff, the HMM
is able to generate an alignment that correctly iden-
tifies divergent forms of conserved regions. Finally,
there are three aminoglycoside 3'-phosphotrans-
ferase sequences (34 to 33, 58) which are only desig-
nated as kinases because they satisfy the PROSITE

avnraceian for the cratalvtie laon



Hidden Markov Models 1519
Subdemain
PROSITE
X-ray A ARAAR, RPN YYYTON NYTY VO
T-ray 6.6665G. .. G RHENHL R
T CAPR=ALPKA  L.YERIV... ..D..LLRNL.LOVD.LTRRF.Gnlkng. ... .VNDIRNHS. . . .WF= h
2 VEET+ G.55LT56..5... A.nr.wm.Lsi’s.rnxr.-r.. JIDOILATD.. . EV=cv......
3T F.FESLR. .. oo d50LLRRLLSER.PRDRY E. . LTEELLM-L - \.-avnue)! N
4 5PK) L.YRGIGE. . ...n JFID5L.LOVD.PNRS.T. . nuuur ..........
S RSKI-W A TLILR. . ..LLRALJFARY.PANAL. c-m. ..... Aﬁ[lll-....-l-!yl:idnzo
& PY? L.HAIIDp.. .0 .YVRCC.LXRD.PORT.S . vt 'er, e IPELLARP....YV=..
T T PRC-MMHA  L.FOSIAL.. +..5..ICRGL.NTRH.PAKRL .Ce gpeg . . . . .EROVAEHA. . . . FF~
§ POGFA-2 PN ..E--INOKC.VEER.FEIRP P ..
9 PBS2 L.5AIVOD. .. ... .FUSLC.LQKI.PERRP.Y .
50 RIKL S.RERVD. .. C..LLORX.THPY.YDCRP.T.......... TQULLARP. . . .EXeit
11 NER2 L.RELaK. .. [ PN D, LLNRILVYE.PQOAL.5.......... PRRILARG. . . .FFnelrndde))
12 5.2 L-XFVRD. .. . e eeuD. LARNC.VQFI.PRARP.T.. SFLEIVML-. o ks
13 NSVR 1.TR1IRGaqV. . HV.D.EFspbpesrils-. .. Y. .LVCRA.LTFD.CALRP.S. . CAAELLCLP. . L e
14 ERKY L.WRILG...1...LG.5.PSqudlaciidi~. ... 0..LLDAK.LTFA.PHARI.T., SSEEMLABP....
15 EGFK S.SILER...G.. . .INVAC VK I0.ADSRP K., JFARLLIE-..
16 ECA E.RATND...G L. veeva.0. LAXQC.VOQE.RARRP K .. FADI¥SI-..
17 DPYR) 8. 8LAATe. .S, LT.T.558 VR...... E..ILTQC.NDSK.PDSRP.T. ......... FROIIVH-. . . .~Lrkemedqgy. .
18 CLK LLARRER. .1, .LG.P.LPRAAGQALTAS-. . .. D..LIGKR.LEYD.PARRL.T.......... LREALRHP. . . .Ffeyplakhc. ..
19 CDC2MS L.FRIFL. . .h...LG.T . Pnevupeve2te. .. KN L.DEN D..LLSRN.LIYD.PARKI.5 .. .GRNALTEP. ...
20 CANII-ALPHA  L.YQUIK...A... veeuD. LINKK.LTIN.PSRRI.T..
21 Co5RC 1.0QVER...G...YR.X.PC. ..D. .LRCUC.VARE.PEERP.T_.
22 C-MF TiFAVGK...G...Y4.5.POLsky . .LVADC.VAKY .REEAP.L
23 KLSAAUNAN  [.QNLER...C...VR.K.VK.,. ..Q..LNRLC.VRER.PEDRP.T
24 RLSAAOUSE  [.ONLER...C...YR.E.VR... .B..LNNLC.VREK.PEDRP.T. .. oo oladdtitatel’
25 ARKBJADAAY  [.DRATL...T...MA.V.EL... 5. .LLECL.LQRD.VERAL .Go)Erg. ... . AQEVRESP. .. . FF-tslduqn2lé
26 ARKDBOVIZ  [.OMATL...T . .LLEGL.LORD.VNARL .Cedgrg. ... AQEVEESP. . . .FF-rslduqn2)6
27 BYALSCHPO  L.HCIVQ...E +.L..FYDAC.LNKD.PTLRA.S..........POQLCANP. .., YF-qqelnizv20
28 CYGRANBPU  1.ARVSK...0 .. T..AIRAC.WVED.PRERP . & .. JIEVRTR- L=aplqhgl1so
2 APAT LERVIE.. .G .8 .LNORC.VAED .PQENP P .. FOQIRLA- Lerktukea26d
30 AYPANUNAN  I.EAVIR...C ..L..LNQRC.VAED.PQERP.P . .FQQIRLT- L=rktaren260
31 AYPRIUNAR  V.QAVRE...G ..L..LNERC.VAQD.PAERP .0
32 ANPANOUSE  1.ERVIR...G...EQ.P.PFrpumdigski-. +.Q. .LNQRC.WAED . PQERP P
33 arrhat V.OKVRN...G...QR.P.YFrpaidreg.. ..L..LXERC.VAQD.PTERP .§
M CYGS.STRPY  1.GRVRS...C ++5. . AIRAC.VPED.PADRP X JINAVRYE-. .. .=L-aplqkg2286 | )
35 VPSFYEAST  L.FRYRSD.. ...0. .LVLDR.1QLD.PSKAL S. . COELLNR-yrgiFF-pdytyr1255 3\
36 BSELAAT «.oL. .LVKSC.VEED.PERRP.D, . <oslmabitgleyoe \
37 MSEREVIAN «..¥¥....,.L..LVKNC.WEED.PERRP.D
38 Kz.vzve L.ALSTL... + v LEyDptibe, . oev—m_-ACE.LNTRI.S
3¢ MZMEVIL - YQFE. .QL.S.PDtaladlay66e. ¥, LVSAL.CHTN.PCom -
40 ARIHSVI1 C.LRVIN. . AL RG.T.LOLrggarcelle. +.G. LYMC.LERD.PARRP .5
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negatives (41 to 43, 51 to 53) of which the first three
fall immediately below our kinase cutoff. For
PROFILESEARCH, there are 12 false negatives
(23 to 26, 35, 38 to 41, 51 to 53) but it should be
recalled that eight of these (those indicated by $ in
Fig. 11B) do not appear in the results obtained from
searching SWISS-PROT 25 provided to us by M.
Gribskov {personal communication). We suspect
that at least four (23 to 26) would be correctly
classified as kinases by PROFILESEARCH leaving
an estimate of three to eight false negatives. In the
case of PROSITE, using our assumption of a kinase
. to be a true pasitive (T) sequence for anv one of the

. EatfLEN=.=~SK.LTRAQ.P
-.F..FVATL.LXTY.PEIEX.D:
AL LENGR.LTR= ommm= =
DisFVERC.LAED .ASE—eT...
X..LVAQY.GIAD.PDRRR.Lq.

0..LIKEALLDYD.FUKIL.E. . LSQIQEI-. , ..~V~dcmypre 162
..B..AFTRT.LPLO.PRR-L.Overe. . .. VREISGF-. .. .=LeLliqavpd28}
« K. ENHKL.LPFS.PDS ... o =e=¥VTHC. . . .OF+aldalitd72
TR T R LR T oo ARRANEH=, . = LogrvRrtad?

wmare ¥DUD.ATSAN .Dtmgamsty. . VSELLAAP . . . .FO-gvyhlinges

three patterns, there are three false negatives (39, 42
to 43). However, the actual performance of the
PROSITE patterns themselves is much worse; scans
of SWISS-PROT 22 with each of the patterns
PROTEIN_KINASE_ATP. PROTEIN-
KINASE_ST and PROTEIN_KINASE_TYR indi-
vidually yield 40, 2 and 3 false negatives,
respectwelv

The difficulty in quantifying the precise number
of false positives and false negatives produced by
the database discrimination tests may be illustrated
by employving an alternative mechanism for
assessing the number of false negatives. If simply
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ID Length } NLL-score { Z-score | HMM { PROFILE- | Keyword PROSITE

SEARCH A | Bl] B2

23 KLSK_HUMAN 509 1188.032 | 48.056 + -§ + T]1-]T
24 KLSK MOUSE 509 1193.879 | 47.376 + -$ + T} -]T
25 ARKB_HUMAN 689 1826.919 § 31.781 + -$ + *1*yo-
26 ARKB.BOVIN 689 1827.514 | 31.720 + -$ + * e ] -
27 BYR1SCHPO 340 808.153 | 27.540 + + - N|ITT] -
28 CYGR_ARBPU 986 2839.392 | 22.121 + + - %1 - -
29 ANPA_RAT 1057 3062.107 | 21.418 + + - %{ -1 -
30 ANPA_HUMAN | 1061 3072.615 | 21.390 + + %] - -
31 NPB.LHUMAN 1047 3033.232 | 21.220 + + - %l - | -
32 ANPA_MQUSE 1057 | 3065.181 | 21.042 + + - %l -1 -
33 ANPB.RAT 1047 3038.053 | 20.633 + -+ - %l - | -
34 CYGS_STRPU 1125 3277.621 | 18.745 + + - %] -] -
35 VPSF_YEAST 1454 4263.173 | 17.896 + - N|TT -
36 HSER-RAT 1075 3143.529 | 17.681 + - - %) -1 -
37 HSER_.HUMAN 1073 | 3139.039 | 17.552 + - - %] - -
38 KR2.VZVD 510 1521.597 | 9.615 + - + N|T] -
39 KR2_HSV1! 518 1548.949 | 9.042 + - + N|{-1-
40 KR1.HSVII 230 710.448 6.773 + -3 + N|T]{| -
41 KR2.EBV 455 1393.761 | 4.935 - - + T] - T
42 KRB2.VACCV 283 880.650 4.848 - + + N|NJ| -
43 KRB2_.VACCC 283 880.753 4.838 - + + N{iN]J| -
44 AK3.ECOLI 449 1385.412 | 3.900 - - - EE -
45 PSP_.MOUSE 235 754.545 3.804 - - - -] - -
46 DHOM_BACSU 433 1340.413 | 3.706 | . - - - B -
47 FLIG_.BACSU 338 1055.096 | 3.699 - - - -] - -
48 CALQ_RABIT 395 1229.120 | 3.487 - - - - - -
49 NUIM_PODAN 368 1149.759 | 3.415 - - - - b - -
50 RUVA_ECOLI 203 667.519 3.413 - - - - b -] -
51 UlSR_HSVEU 562 1728.770 3.171 - -§ + T - T
52 KRF1_.VACCC 439 1366.011 | 2.900 - -$ + N{T]J -
53 ULST_.HCMVA 707 2165.296 | 2.854 - -3 + N T
54 KKAG.ACIBA 259 838.469 2.370 - - - - -{T
\ 55 KKA8_ECOLI 271 885.548 1.182 - - - -7 -{T
Y 56 KGPB_.BOVIN 293 953.735 0.684 - - + Pl P -
57 EGFR.CHICK 703 2179.703 | 0.065 - - + Pl - P
58 KKA1_ECOLI 271 902.461 | -0467 | - - - -1 T -
59 KDTK_DROME | 753 2334.760 | -0.523 - - + Nf{-{[N
60 KPCG_HUMAN 318 1051.016 | -1.486 - - + P|P| -

B

Figure 11. A, Multiple sequence alignment generated by our kinase HMM of some of the sequences used to train the
HMM (1 to 22) and test sequences from the SWISS-PROT 22 database (23 to 60} (see Results section (b)). Numerals
appearing in the alignments indicate the number of amino acids to be inserted at that point. otherwise the notation
follows the convention of Fig. 5. In Subdomain, the Roman numerais and * refer to the subdomains and residues -
conserved across 75 serine/threonine kinases given by Hanks & Quinn (1991). A and B in PROSITE refer to the ATP
binding and catalytic regions, respectively, used to create 2 different signature patterns for kinases. X-ray identifies the
location of the x-helices AA-AI and B-strands B1-B9 (read vertically) derived from the 27 A erystal structure of the
catalytic subunit of cAMP-dependent protein kinase (sequence 1} (Knighton ef al.. 1991). Sequences 1 to 22 are
representative kinases taken from the March 1992 Protein Kinase Catalytic Domain Database (Hanks & Quinn, 1991).
These are: CAPK-ALPHA, cAMP-dependent protein kinase catalytic subunit, a-form: WEE1 +. reduced size at division
mutant wild-type allele gene product; TIK, mouse serine/threonine kinase; SPK1. 8. cerevisiae kinase cloned with anti-p-
Tyr antibodies; RSK1-N, amino domain of type 1 ribosomal protein 86 kinase; PYT, putative serine/threonine kinase
cloned with anti-p-Tyr antibodies; PKC-ALPHA, protein kinase C, x-form; PDGFR-B, platelet-derived growth factor
receptor B type; PBS2, polymix in B antibiotic resistance gene product: MIK1, 8. pombe mik! acts redundantly with
weel +; MCK1, 8. cerevisiae protein kinase; INS.R, insulin receptor: HSVK. Herpes simplex virus-US3 gene product;
ERK], rat insulin-stimulated protein kinase; EGFR, epidermal growth factor receptor {celtular homolog of v-erbB);
ECK, receptor-like tyrosine kinase detected in epithelial cells; DPYK. developmentally regulated tyrosine kinase in D.
discoideum; CLK, mouse serine/threonine/tyrosine kinase; CDC2HS. human functional homolog of yeast ede2+ /CDC28;
CAMII-ALPHA, calcium/calmodulin-dependent protein kinase II, z-subunit; C-SRC, cellular homolog of v-src; and
C-RAF, cellular homolog of »-raf/mil. Sequences 2 to 4, 6. 10, 11, 14. 17 and 18 are the candidate dual-specificity protein
kinases as defined by Lindberg ef al. (1992). Sequences 23 to 40 are the SWISS-PROT 22 sequences designated as kinases
by our HMM {Z-score >6-0) but not by 2ll 3 other methods, PROSITE. PROFILESEARCH and the keyword search.
Bequences 41 to 50 are the top 10 sequences below our cutoff of 60 and 41 to 43 and 51 to B0 are sequences that
were not classified as kinases by the HMM but were so by one or more (but not all) of the 3 other methods. Note that
sequences identified as kinases by all 4 methods are not shown. All sequences that are less than 200 residues in length
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the number of sequences denoted as kinases only by
all three other methods is evaluated, the number of
false negatives for each of the techniques differ from
the more detailed analysis: two for the HMM
(42 to 43), seven for PROFILESEARCH (23 to 26,
35, 38, 40) and none for PROSITE (ignoring known
false negatives as above). This general problem is
further highlighted by the guanylyl cyclases
(indicated by 9, in Fig. 11B). If the definition of a
kinase is based upon function and not possession of
particular sequence patterns, then the guanylyl
cyclases are the only false positives for both the
HMM and PROFILESEARCH. The PROSITE
patterns PROTEIN_KINASE_ATP, PROTEIN_
KINASE.ST and PROTEIN._KINASE_TYR
produce eight, none and two false positives. respec-
tively, giving some indication of the actual
PROSITE performance. :

Overall, both the HMM and PROFILESEARCH
appear to perform generally better than PROSITE
in the discrimination tests, with the HMM possibly
having a slight advantage over PROFILE-
SEARCH.

The HMM database search did not suggest any
new putative kinases in SWISS-PROT 22.
However, & comparative examination of the HMM
produced multiple sequence alignment and the
crystal structure of the catalytic subunit of cAMP-
dependent protein kinase (Knighton et al., 1991)
(sequence 1), a template for the protein kinase
family, yields insights into the conserved regions
and their fanctions in kinases of unknown structure.
Figure 11A displays the location of secondary struc-
ture elements obtained from this crystal structure.
An invariant Asp in subdomain VIb (Aspl66 in
Knighton et al., 1991) that is proposed to be the
catalytic base is known to diverge in guanylyl
cyclases (28 to 34, 36 to 37) even though the imme-
diate region is highly conserved (Garbers, 1992).
Our results indicate that other invariant residues
appear to be replaced as well. In the sea urchin
spermatozoan cell-surface receptor for the chemo-
tactic peptide “‘resact” {sequences 28 and 34), a Lys

in subdomain II (Lys72) that forms part of the ATP

a- and B-phosphate binding site is changed to His.
The heat-stable entertoxin receptor of rat (36)
replaces an Asp in subdomain IX (Asp200) that
contributes directly to stabilization of the catalytic
loop by Glu. Yeast VPS15 (sequence 35), a probable
serine/threonine kinase that is autophosphorylated,
lacks many of the residues in subdomain 1. In
addition. a conserved ion-pair that stabilizes ATP
{Glu91-Lys72) would be disrupted in VPS15
because the Glu in subdomain 111 is altered to Arg
resulting in the apposition of two positively charged
residues. In the putative B12 kinases of two strains
of vaceinia virus (42 to 43), the proposed Asp cata-
lytic base is replaced by Lys (cf. guanylyl cyclases).
This is accompanied by a further change in the
“general” sequence of the catalytic loop: the
normally positively charged residue at » + 2 has
been altered to Glu. In general, all the sequences
below our cutoff and the last one above it (40 to 60}
appear to lack a-helix F (see X-ray in Fig. 11A). The
functional and or structural consequences of these
modifications on any kinase activity are not clear.

(¢) EF-hand experiments

For these experiments we used the June 1992
database of EF-hand sequences maintained by
Kretsinger and co-workers (Nakayama et al., 1992).
Sequences in this database are proteins containirl%
one or more copies of the EF-hand motif, a 29
residue structure present in cytosolic calcium-modu-
lated proteins (Nakayama et al., 1992; Persechini et
al., 1989; Moncrief et al., 1990). These proteins bind
the second messenger calcium and in their active
form function as enzymes or regulate other enzymes
and structural proteins. The motif consists of an
a-helix, a loop binding a Ca®* followed by a second
helix. Although a number of proteins possess the
EF-hand motif, some of these regions have lost their
calcium-binding property.

For our training set, we extracted the EF-hand

- structures from each of the 242 sequences in the

have been removed. B, Details on sequences 23 to 60 shown in the alignment (arranged in order of decreasing Z-score).
NLL-score and Z-score are measures of how well the kinase HMM fits these SWISS-PROT 22 test sequence that were not
present in the training set {see Results section (b) for more details). In HMM, PROFILESEARCH and Keyword, +
denotes sequences that are classified as containing a kinase domain and ~ those that do not. For PROFILESEARCH, -§
identifies sequences that do not appear in the results obtained’ from searching SWISS-PROT 25 (not 22 as in HMM,
Keyword and PROSITE) provided to us by M. Gribskov (personal communication). Two PROSITE signature patterns
for eucaryotic protein kinases have been derived and these are labeled A and B in the alignment. A is the region believed
to be involved in ATP binding (PROSITE entry PROTEIN_KINASE_ATP) while Bl and B2 indicate the area
important for catalytic activity in serine/threonine kinases (PROTEIN_KINASE_ST) and tyrosine kinases
(PROTEIN.KINASE_TYR), respectively. In all instances, T signifies a true positive; N a false negative (a sequence
which belongs to the set under consideration but which is not picked up by the pattern); P'a “‘potential’’ hit (a sequence
that belongs to the set but which is not picked up because the region that contains the pattern is not yet available in the
data bank, i.e. a partial sequence); and ? an unknown (a sequence which possibly could belong to the set). * Indicates
SWISS-PROT files which contain a cross reference to the specified PROSITE pattern, but these PROSITE entries do
not contain a corresponding pointer to the SWISS-PROT file. — Signifies sequences that do not satisfy the kinase
patterns and % denotes particulate forms of guanylyl cyclase receptors which contain an intracellular protein kinase-like
domain but which have not been shown to possess kinase activity to date (reviewed by Garbers, 1992).
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ib Leagth NLL-score Z-score HMM PROFILESEARCH Keyword | Prosite
Gribskov HMM

- 81 SCPA_PENSP 192 £56.636 5.071 + . + + T
82 SCPB_PENSP 192 557.071 5.924 + . + + T
83 IPYR_ARATH 263 769.241 $.909 + - - R .
84 SCP1.BRALA 185 535.787 5.827 + - + + T
85 SCP2.BRALA 18% 535.816 5.818 + - + + T
86 PIP3_RAT 756 2244.255 5.713 + . - - ?
87 AACT.CEICK 888 2641.411 $.684 + . - + N
88 CAB.MOUSE 101 284.695 | 5.589 + - . + .
89 TEGU._SCHMA 190 552.242 5.469 + . + - 7
90 CAB_RAT 101 285.488 5.369 + . . R .
91 G19P_LHUMAN 527 1560.198 5.330 + . . . T
92 TCH2_ARATH 45 116.235 5.321 + . . + T
93 KDGL.HUMAN 735 2182.343 5.301 + . | . + T
94 PIP3_BOVIN 695 2063.206 5.034 + . . - ?
95 CALM.LYTPI 30 | 6734 4.942 + . . + P
96 CAPI.LHUMAN 714 2120.342 4.924 + . + + T
97 CICI_CYPCA 1852 5530.321 4714 - + - - .
98 GUNF_CLOTM 739 2196.618 4.602 - . R - ?
99 CIC1.RABIT 1873 5593.640 4.550 . + . . .
100 VSTABPT4 80 224.359 £.470 - . . B B
101 CALG.CHICK 65 178.908 £.438 - + + + T
102 NIFE.NOSCO 86 243.556 4.347 - . . B .
103 ARFL_DROME 180 524.609 4.300 - . - - A
104 AROAKLEPN 427 1264.280 4.296 - . - . .
105 REL1.HUMAN 185 540.676 4.249 . . . B Po-
106 H{1.BOVIN 104 298.227 4.240 - . . . .
107 YCSX.CELPY 110 316.022 4.210 . . . - .
108 DP3X.ECOLI 643 1910.667 4.186 - . . - R
. 109 AROASALTY 427 1264.760 4.130 . . - R .
,\-\ 110 ANX1.CAVCU 346 1022.514 1,043 - . . . B
- 111 CICCRAT 2169 6481.468 4.011 - + . . .
. 112 CICC_RABIT 2171 | 6487.460 4.010 - + .. . .
113 LACALACLA 141 407.967 3.986 - - . - .
114 AROA_BORPE 442 1310.475 3.9835 - - . . .
115 AROASALTI 427 1265.295 3.945 . . . - .
116 AROA_SALGL 427 1265.295 3.945 - . - - .
117 CAP1.CHICK 704 2093.590 3.888 . . . + T
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probabilities between amiro acids into account. Tt
also remains to be seen whether or not incorporating
any of these exiensions into the HMM approach wil
yield even better results.

We also believe that some of the errors made by
our HMM models are due to the fact that these
models are suboptimal, in the sense that their
N1L-scores are not as low as they could be. This is
because the EM procedure is not guaranteed to find
the globally optimal model for a given training set.
In other experiments, reported by Haussler ¢ al.
(1993), we trained an HMM for- globm~ beginning
with a model derived from the Bashford et al. (1987)
alignment, and obtained a slightly lower N Ll.-score
than any model from our experiments using EM on
unaligned training sequences (208 compared to
210-3}. Hence. we know that EM is not locating the
globally optimal model in this case. An important
open problem is to find a reliable way to prevent
EM from getting stuck and returning a suboptimal
solution.

Another issue is the adequacy of the hidden
Markov model itself as a statistical model of the
sequence variation within a protem family. Clearly
an HMM provides at best a “first order™ mode) of
sequence variation. There are many kinds of inter-
actions in proteins that are not east!\ modeled by
HMMs. for example. pairwise correlations between
amino acid distributions in positions that are widely
separated in the primary sequence, but close in the
three-dimensional structure (see e.g. Klinger &
Brutlag (1993)). It would be very valuable to have
more general models that incorporate such inter-
actions while still remaining computationally trac-
table. We are currently exploring the potential of
one-model class of this tvoe to canture the hase-

of the PROSITE-indexed domains in a single long
protein, using the Viterbi algorithm. The remaining
portions of the sequence could be marked as
“unknown’. While this would not constitute a
complete parse of the sequence, it would be very
useful in providing some automatic annotation of
new sequences, which is of eritical importance as the
rate of growth of the protein databases continues to
accelerate. A related approach to protein anno-
tation is given by Stuitz ef al. (1993), and a related
HMM-based DNA parser for K. coli is described by
Krogh et al. (1993b).

A  comparative examination of the HMM
produced kinase multiple sequence alignment and
the crystal structure of the catalytic subunit of
¢AMP-dependent protein kinase (Knighton e al..
1991) indicates a number of conserved residues in
kinases of unknown structure that may be suitable
for further experimental study (see Results section
(b)). Results from our database discrimination tests
suggest the presence of an EF-hand calcium-binding
motif in a highly conserved and evolutionary
preserved putative intracellular region of 155
residues in the 2-1 subunit of L-type caleium chan-
nels which play an important role in excitation-
contraction coupling (see Results section (c)). This
region has bheen suggested to contain the functional

"domains that are typical or essential for all L-type

calcium channels regardless of whether they couple
to ryanodine receptors. conduet ions or both. Our
EF-hand HMM indicates the following proteins may
also possess this motif: chicken myosin light. chain
alkali (smooth muscle), bovine calpaetain I light
chain. drabidopsis thaliarna inorganic pyrophospha-
tase. rat placental calcium-binding protein and rat

and hovine ) -phosphatidylingsjtol-4.5-bisnhosnhate



http://ftp.rse.ucsc.edu
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