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In  recent protein structure prediction  research there  has 
been a great deal of interest in using amino acid interaction 
preferences  (cg.  contact  potentials or potentials of mean 
force) to align (’thread’) a protein  sequence  to a known 
structural motif. An important open question  is  whether  a 
polynomial time algorithm €or finding the globally optimal 
threading is possible.  We identify  the two critical conditions 
governing this question: (i) variable-length  gaps are  admit- 
te&h.tnintntheaiignmcnt~and (E) interactions  between  amino 
acids from  the  sequence are admitted  into  the score func- 
tion. We prove that if both these  conditions are allowed 
then  the protein threading decision problem  (does  there 
exist  a threading with a score <X?) is NP-complete  (in the 
strong sense, i.e. is not merely a number  problem)  and  the 
related problem of finding  the globally optimal  protein 
threading is hT-hard. Therefore, no polynomial time algo- 
rithm is possible (unless P = NP). This result  augments 
existing  proofs that the direct protein folding problem is 
NP-complete by providing the corresponding proof for  the 
‘inverse’ protein folding problem. It  provides aiheoretical 
basis for  understanding algorithms currently in use and 
indicates that compiiFtional strategies from other NP- 
complete  problems may be useful for predictive algorithms. 
K c  words: contact potentialslinvene protein folding/NPcom- 
pletdprotein structure predictiodprotein threadinghequence- 
structure alignment 

Introduction 
The protein  folding  problem is to s m  from a  string  giving 
the protein’s  amino  acid  sequence  and  compute its correctly 
folded 3-D protein  structure. IC is an  important  problem because 
proteins  underlie almost all biological  processes  and their 
function foIfows ciirctly from  their  3-D  folded shape. Its 
importance is escalating  rapidly  due  to  the  rapid increase in 
the number of sequences  becoming  available compared with 
the slow growth in the numkr of experimentally determined 
3-D protein  structures. The direct  approach  to  protein folding 
seeks to find the folded  conformation  having  minimum  energy. 
This is difficult because (i) a folded  protein  results from the 
delicate energy  balance of  powerful  atomic forces  and (ii) the 
vast number of possible  conformations  poses a formidable 
computational barrier. The forces  involved  are often poorly 
understood  or  difficult  to  model  accurately,  and include stabiliz- 
ing and  destabilizing  terms  making  large  contributions  of 
opposite sign  summed over a very  large  number  of atoms 
(Creiphton, 1983). The computational  burden  of  the  direct 
approach has been shown to be NP-hard  (widely assumed to 
require an exponential  amount of time) even OR simplified 
lattice models, with respect to either (i) finding  minimum 
energy conformations or (ii) meeting  endpoint  and conforma- 
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tion (e.g. secondary structure) constraints {Ngo and Marks, 
1992;  Fraenkel, 1993; Unger and Moult, 1993). 

One  important alternative approach  is to use the known 
protein  srmctures as (i) spatial  folding templates,  (ii) additional 
knowledge  about  protein  strucmre  and (iii)  constraints on 
possible  folds. This is a powerful  strategy because folded 
proteins  exhibit recurring patterns of organization. Chothia 
(1992) esrimates  that  there are only -lo00 different protein 
structural  families.  In this approach, each known protei% 
structure (or family) ‘recognizes‘  the  protein sequences likely 
to  fold into a  similar  structure. Because it starts with structures 
and  predicts sequences instead of starting with sequences and - 
predictins  structures, it  is often referred to as the ‘inverse’ 
folding  problem. In its fully general sense it includes ab initio 
design of protein sequences to achieve a target  structure (Pabo, 
1983).  but  we shall restrict attention to folding given native 
sequences.  The known structure  establishes a set of possible 
amino acid  positions  in 3-D space (perhaps the  spatial locations 
of its main-chain a carbons). ‘Recognition’ is mediated by a 
suitable  score  function. An alignment between spatial positions 
and  sequence amino acids is usually a by-propuct of the 
reco,gidon step. The sequence is given a similar . -D fold  by 
placing its amino acids  into their aligned spati 9 positions. 
[Furtheruechniques are necessary to correctly place  the variable 
loop regions (Greer, 1990; Zheng et aL,- 1993) and  position 
the  side chains (Desmet er ai., 1992), but the focus of this 
paper is on predicting and placing  the consenred fold.] The 
process of dim&g a sequence to a  suucturE and thereby 
guiding  the spatial placement of ‘sequence amino acids is 
referred to as ‘threading’  the  sequence onto the structure 
(Bryant and Lawrence, 1993). ‘A threading’ means a specific 
alignment betwen sequence and smcture (chosen from the 
large number  of possible alignments). In this way ‘threading’ 
specializes  the more general term ‘alignment’ tomfer M c -  
ally to a structure (considered as a template) and a sequence 
(considered as being arranged on the template). 

Initially,  such methods employed primary sequence string 
similarity  between the candidate sequence and  the native 
sequence of the structure  to perform the threading (‘homology 
modeling’ or ‘homological extension’). Computing the 
sequence  similarity  yields a direct alignment of amino acids 
in the sequences of the candidate and sbxcture (Sankof  and 
Kruskal 1983).  and hence their spatial  positions.  In cases 
where  the sequence similarity is  high this is still the most 
successful  protein structure prediction method known, but it 
is of limited general use because few sequences have  high 
primary sequence similarity to another whose structure is 
known.  Recently,  however,  researchers have been able to 
extend the match process beyond primary sequence similarity 
and  align a sequence directly to a structure. 

These  new approaches exploit the fact that amino acid types 
have different preferences for occupying different  structural 
environments  (e.g. preferences for being in a-helices  or 0- 
sheets, or  for being more or less  buried in the protein  interior). 
Additionally. some of the new approaches also  exploit the  fact 
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that  there  appear to be distinct preferences  for  side-chain 
contact (e.& contact potentials; Maiorov and Crippen,  1992), 
or more  generally for spatial proximity  (e.g. potentials of  mean 
force; Sippl, 1990,  1993), as a  function of those  environments. 
For example,  a  buried  charged  residue  may be more likely to 
be adjacent  to  another  buried  residue  of  opposite  charge.  These 
interaction  preferences  have  been  quantitated statistically (e.g. 
Miyazawa  and  Jernigan, 1985). They can be used  to  produce 
a score  function reflecting the  extent to which  amino  acids 
from the  sequence are located  in  preferred  environments  and 
adjacent to preferred  neighbors. The known  protein structures 
can  be  represented in a way that makes explicit the structural 
environments at each  position, as well as the spatially adjacent 
structural positions. This done,  the  sequence  can be threaded 
onto  the structure by searching for a  threading  which  optimizes 
the score function  and  hence  maximizes  the  degree to which 
environment and adjacency  preferences  are  satisfied. This has 
been a very active area of recent  research, in part  because it 
has  been  somewhat successful, and  various  scoring  schemes 
and  threading  algorithms  have  been  proposed. 

Before  proceeding it is  necessary to separate carefully the 
different approaches  to  protein  threading that have  been 
explored in the literature and to state clearly the  problem  we 
address. The common theme to all threading  proposals  is  the 
supposition  that: (i) the  known structure provides  a set of 
positions  in 3-D space;  (ii)  these will be filled  by  amino  acids 
from  a  sequence of unknown structure; (iii) different candidate 
threadings arisefrom different struc&es, different sequences 
and different possible  alignments of smcture positions  and 
sequence amino acids; and (iv) a score function  (often statist- 
ical) CM distinguish  good  from  bad  threadings. 
For the  purposes of this paper we will assume that the 

structure an the sequence are fixed in advance.  We  will 
examine in d L 'I the role of  the different possible ali,onments 
and  the score function. 

It will turn out that the critical conditions  governing  computa- 
tional  complexity are whether or not: (i) variable-length  gaps 
are permitted in the  alignments;  and (ii) the  score for placing 
a  sequence  amino  acid  into it given structural position depends 
on the specific amino acid types from  the  sequence  being 
threaded that are placed  into  neighboring (interacting) structural 
positions. 

The  variable-length  gap  condition arises if  one  wants to 
reflect  genetic insertions and deletions. The score  function 
condition arises if one wishes  to reflect amino acid  preferences 
for side-chain  contact  or spatial proximity  based on the 
sequen.Ckamia0 acids proposed to actually  occupy  the spatial 

We will show that any  formulation of protein  threading 
which  allows  both  these  conditions  is  NP-complete  and  neces- 
sarily  leads to an "-hard search for the  optimal  threading. It 
is insufficient merely to observe  that  the  problem's  search 
space is exponentially l q e  (e.g.  by counting  the  number of 
arrangements  of an ordered set of  residues  with  possible  gaps), 
In their proof that the  direct  protein  folding  problem is NP- 
complete, Ngo and Marks (1992)  address in detail and  lay  to 
rest this  fallacy.  Many  probtems  which  have  an  exponentially 
large  search space still have  polynomial  time solutions, and 
the distinctions between  polynomial  time  and  NP-complete 
problems are often  extremely subtle. For  example,  the 3SAT 
problem  discussed  here is known to be NP-complete;  the 
closely related 2SAT problem (identical except  that  each  clause 
has two literals instead of three) shares  the same exponentially 

positions. 

large space of possible  solutions (the 2N possible truth vafue 
assignments  to N Boolean variables), but is easily solved in 
polynomial  time by resolution  techniques  (Garey  and  Johnson, 
1979).  However, no  polynomial  time  solution is known for 
any  NP-complete  problem. 

In the  remainder of  this  section  we categorize  the different 
threading  approaches  according  to  how  they  accommodate  the 
search  problem.  Some  disallow either vm-able-length gaps or 
interactions  between  amino  acids from the sequence  being 
threaded,  and  can  therefore find the  optimal  threading  without 
an NP-hard  search  problem. Others admit both conditions, 
but  these  must  choose  between  potentially  finding only  an 
approximation to the  optimal  threading or coping  with a 
potentially  exponential  search. 

Some approaches  do not permit  variable-length  gaps in the 
alignment at all. Instead hey employ  a  fixed-length  moving 
window,  equal  in  length to either the structure or the  sequence 
undezanalysis. This is used to extract from a database a large 
number  of  subsequences or substructures of the  same  length 
as the  candidate.  The  lengths  being  equal.  they  evaluate  the 
score function at the  alignment that pairs  the ith sequence 
amino acid with  the ith smcture position  [Hendlich et af., 
1990; Sippl, 1990;  Crippen.  199 1; Maiorov  and  Crippen.  1992; 
Sippl and Weitckus,  1992;  and  the  sections of Bryant and 
Lawrence  (1993)  discussing  ungapped  alignment]. This permits 
the analysis to focus  closely  on  the  score function, without 
being  distracted by other  complications. 'The results demon- 
strate clearly that score  functions  can be devised  to  identify 
the correct match  from a large number of alternatives.  However, 
this method is of  limited  use in a predfctive  setting.  Ignoring 
variable-length  gap  regions  means thai the structure and a 
novel  sequence  will  almost  invariably be partially out of 
registration, herhaps grossly so. Where this occurs,  the  correct 
alignment will not be found and consequently  the spatial 
locations  predicted for sequence amino acids will be wrong. 

Alternatively,  some  approaches do not  reflect  the  interaction 
preferences  between  amino  acids from the  sequence to be 
threaded. In this case, the score for placing a sequence  amino 
acid of a specific , t y p e  into a specific position in the smcture 
will be independent of  sequence amino acid types placed into 
other (neighboring)  positions  of  the structure. For  example, 
the score for placing  a  charged  residue  from  the  sequence into 
a  position  buried  in  the structure core win be independent of 
whether a sequence  residue of opposite  charge is placed into 
a spatially adjacent  position. This leads to a much simpler 
search for the  optimal  threading  and  often performs quite well, 
but at  the price of giving up a potentially richer  source of 
structural information.  Such  approaches  include: (i), ignoring 
contacts altogether to consider  only  the I d  environment of 
an amino acid  (Bowie er ai.. 1991;  Liithy etal-, 1992;  Johnson 
et nL, 1993); (ii) taking  all  contacts  and interactions to be to 
generic bulk  peptide  instead  of to specific amino acid  types 
(Ouzounis et al.. 1993);  or (iii) evaluating  interaction prefer- 
ences with  respect  to  residues from the  structure's  original 
native  sequence  instead  of  from the sequence  being  threaded 
(Sippl. 1993;  Wilmanns and Eisenbeg. 1993). These are all 
fundamentally  equivalent.  The crucial common  condition  is 
that the score for placins any amino  acid  type  into  any 
structural position  does not vary as different amino acid types 
from  the  sequence  being h a d e d  are placed into other 
positions. Although  the  score  function  may  have  been  para- 
meterized by considering  residue interactions or Contacts (LC 

in Ouzounis er a/., 1993; Sippl. 1993:  Wilmanns  and Eisenberg, 
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1993). it  never looks at more  than  one  residue  at  a  time  from 
the  sequence  being  threaded.  This satisfies the  fundamental 
assumption of the dynamic pm=,oramming alignment  method 
(Sankof  and hska l .  1983) uhich can be used  without  major 
modification to find the  optimal  thrkading  (alignment)  between 
sequence and strucmre. For rhese approaches,  the  search for the 
optimal threadins is easily  accomplished  in  polynomial  time. 

For the  remainder of this paper we  will  assume  that  variable- 
jength  gaps are admiaed and that  the  score  function  attempts 
to reflect  the  interaction  preferences  between  amino  acid  types 
from the sequence Wtng headed. This  greatly  complicates 
the  search for the  optimal beading, as proved  below. The 
essential reason is that  the  score  achieved by  placing  a given 
amino acid type into  a  given structural position  now  varies 
depending on whsu amino acid  types  are  placed  into  adjacent 
positions. and  consequently  decisions are no longer  purely 
local. Herc-rtstachers are di+ided on whether to give up on 
finding  the optimal threading, or to give up  on using  a 
polynomial time algorithm 
On the one hand, researchen who  do  not  guarantee  finding 

the  optimal heading have  modified  the  dynamic  programming 
ali,om;lent netbod H) yield ai:. approximate  solution in poly- 
nomial  time.  Godzik et aL (1992) substitute the original 
motif  residues,  or  previously  aligned  sequence  residues in 
subsequent iterative steps for the  neighbors  (their  ‘frozen 
approximation’).  These  researchers  characterize  both  pairwise 
and triplet interactions among sequence  amino  acids;  although 
we will consider  only  painr-ise interactions in this  paper, 
as discussed below pairuise interactions reduce to triplet 
interactions as a  special case. Finkelstein  and  Revaon’).  Thes 850.1 177.1 4134 Tm(to )Tj0 Tcaper, this  pa Tm152.6not  guarant05 Tc 0 Tw 7.5 0 0 810.4 66.5 423.4 Tm7-0.07001 1.0198 0 -0.f -0.02 Tc -0.03001 Tw 90.02 Tc -3sed original as  modified  the  dynam roappneTd(interactions )1rwise as FiOrengo07001 1.0198 0 -0.f -0.02 gh steps i0/F2gh i0/F2gh for vh for 0 1940/F1002 -1 0jj-6001 Tw -12The malysis8 1 26.4 5 1.3gh for 5.4940/F1002 001 17s0o 2 T9omputat5onal  9omplexity7 1 26.4 7 -0..5vh 
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include  many  problems  deeply  central  to  computer  science, 
and so a great  deal of effort by  a  great  many  talented  people 
has been  expended  searching for a  polynomial  time  solution 
to any one of  them.  Because so many people  have failed, it is 
widely  accepted that no  polynomial  time  algorithm  is likely 
to  be  found. 

In some  cases it is 
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(directed) edge, and the edge is  labeled with the pairwise 
environment The edge in the  graph  corresponds  to  the  cell in 
the  matrix,  and  the  edge  label corresponds to  the  label contained 
jn the  cell.  Relared  representations  include adjacency matrix, 
contact  graph. and 50 on. 1 

In his framewok a protein core folding  motif. C, consists 
of rn core segments. Ci. each representing a set of contiguous 
amino acid  positions. Core segments are  usually the pieces of 
secondary  structure comprising the tightly packed internal 
protein  core. As we make no restriction  on core segment 
length, they  could equally well  represent  only a  single  amino 
acid. The jth element of Ci is the  core element C,. Core 
segments are  connected by a  set of  loop  regions  which undergo 
zenetic insmions and deletions over evolutionary time and 
&e nor  usually considered part of the  conserved core motif. 
The loop  regions  might equally well be the  ‘gaps’ (in a  dynamic 
programming &--em sense) used by some formulations. 

The adjacency -graph consists of a set V of venices and a 
set E of  edges. Each core element C, corresponds one-to-one 
to a graph  venex Y E V Consequently,  the  adjacency graph 
vertices  merely  relabel the core elements. Those pairs of 
v& which b m c t  in *e score function (neighbors) are 
connected by a -gaph edge e E E. Each venex and each 
edge is  labeled by an environment The  vertex (amino acid) 
environment labels, L,,, may describe local factors such as 
degree of solveit exposure, local secondary  structure type and 
so forth. The  edge environment labels, Lo may encode distance 
or contact between amino acids,  the  local environments at 
each end  of  the edge,  and so forth. The edges are  directed 
because the local environments at  the  edge head and tail 
may  differ. 

The protein sequence, a. consists of amino  acids oh each 
from one of 20 w r a l l y  occurring amino acid types. A given 
threading of a into Cbsociates one amino acid from a with 
each core element Ci, subject  to the  constraint  that successive 
amino  acids in the sequence necessarily fall into  successive 
core elements in Ci and that the core segments do not overlap. 
A given threading of a into C .may be described completely 
by the  primary  sequence indices of  the amino acids placed in 
the first element  of  each ‘core  segment This is  compactly 
specified by an m-cuple t = (t, ,  r2. . . . , r,), where q is the 
primary  sequence  index  of  the  amino  acid  that the  threading 
places in Ci,. 

For a specific core motif C and  protein sequence a, the 
score of a candidate heading is  defined to be the sum of the 
scmk af  the vertiss and edges in the  adjacency ,pph and 
the  bulk  composition of the  loop regions. By analogy-to energy 
minimization, lower scores are considered  better. The vertex 
score a&, 6) depends only on the  vertex environment label 
d and  the ami00 acid type CI threaded  into the vertex. The 
edge score a&, b. a) depends only  on  the edge-  environment 
label d and the  amino acid types a and b threaded into the 
vertices at the head and tail of the  edge.  For 5, a subsequence 
of a, the  loop score 0x3) depends only  on  the length and bulk 
amino acid  composition of 8 (thus, it  could represent the  ‘gap 
penalty’ in a dynamic  programming  alignment  sense). The 
Specific  numeric  values depend on  the particular scheme chosen 
lo assign  enVirOMIents  and scoring function. 

Informor sketch of pmoj 
The bulk of the  proof  consists of constructing an encoding  from 
ONE-IN-THREE  3SAT into PRO-THREAD. The remainder of 
this  section  briefiy and informally  sketches  the encoding. The 

reader  interested in formal  details  should turn to Appendix. 
The  canonical  (and  first)  NP-complete  problem is SATISFI- 

ABLIlY. A problem  instance  consists of a  set of Boolean 
variables  plus a set  of  Boolean  clauses (a clause is  a disjunction, 
i.e.  logical  OR, of a set of literals; a literal  is either one of  the 
variables or the  negation of  one  of the variables). The question 
is  whether  any  setting  (truth-value  assignment)  of the variables 
makes  all  of  the clauses true simultaneously.  3SAT  is a well- 
known  variant  which  resuicts  the  clauses  to contain exactly 
three  literals.  ONE-IN-THREE 3SAT is  a  further variant of 
3SAT which  requires  that  each of the  clauses be made m e  by 
exactly  one  of  the three literals. All these problems are known 
to be NP-complete  (Schaefer, 1978; Garey and Johnson, 1979, 

The proof  that  PRO-THREAD  is  NP-complete proceeds by 
showing  that  we can encode  any  arbitrary instance of ONE- 
IN-THREE 3SAT ( d e s  there  exist a setting of the-Boolean 
variables  making all the  clauses simultaneously me by exactly 
one literal?) as an  equivalent  instance of PRO-THREAD. 
Threadings with a score of 0 encode  solutions of the original 
ONE-IN-THREE 3SAT problem; threadings with ,positive 
scores  encode  failures. The equivalent  encoded PRO-THREAD 
question  is: Does there  exist a threading with a  score of 0 or 
less? The  answer to this question is ‘yes’ exactly wkien a 
solution  exists  for  the  original ONE-IN-THREE 3SATproblem. 

The essence of the proof is as follows. 
(i) Amino  acids  from  the sequence can encode whether a 

Boolean  variable is TRUE (by T, a threonine residue) or 
FALSE (by F, phenylalanine); and also which literal makes a 
Boolean clause  true  (Q,  glutamine encodes the fip literal; R, 
ara$niner  the  second  lite&,  and S, serine, the thi?q literal). In 
the  encoded  problem,  the  sequence a to be threaded is a = 
QRSQRSQRSQRS . . . QRSTF . . . T F E T F ,  where we 
allot  one ‘QRS’ for each clause, and one ‘TF’ for each 
Boolean  variable. 
(i) By making each core  segment exactly one element long. 

it is  threaded to exactly one  amino  acid.  Con’sequently, any 
given  threading assigns every core segment to  one of (Q, R, 
S, T, F). (As discussed  below, extensions that add ‘GAP’ to 
this list are also  NP-complete.) 

(iii) We can use one core  segment to encode each Boolean 
clause  and choose which  literal  makes  it Vue  by threxliq it 
to Q (= the first literal), R (= the  second literal), or S (= the 
third  literal)  in the sequence a. Similarly, one  core segment 
encoding  each Boolean variable is threaded  to T (= TRUE) 
or F (= FALSE), and  thereby chooses truth values. 

(iv) Pairs of core elements  are  taken as neighbors in the 
core  (and  recorded as such  in  the  adjacency graph) exactly 
when  the clause encoded  by the  first element contains a 
literal  naming the variable  encoded  by the second. The edge 
environment  label  assigned  is an ordered  pair, d = (i, 11, that 
encodes  which literal (i = 1.2 or 3)  is involved and  whether 
the  variable  was  negated  or  positive 0’ = N or P). 

(v) An edge score q(a,  b, d) can be written  that is 0 when 
the  edge  label d is consistent  with the literal choke encoded 
by amino  acid a (as Q. R or S) and  the  truth-value  encoded 
by amino  acid b (as  F  or  T); and is 1 otherwise. 

(vi) By summing a&, 6.6) over all edges, a  score function 
can be written  that  is 0 when a candidate threading encodes a 
truth-value  and  literal  assignment  correctly solving the  original 
problem,  and  positive  otherwise. The question ‘Does there 
exist a threading  with a score of 0 or less?’ is now equivalent 
to the  original ONE-IN-THREE 3SAT question. 

p. 259). 
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(vii) Thus, if we  could  solve  the  general  PRO-THREAD 
problem in polynomial  time, we  could  solve  ONE-IN-THREE 
3SAT in poIynomial  time.  PRO-THREAD is NP-complete. 

In fact, PRO-THREAD is NP-complete  in the strong  sense 
(Le. is not  a number problem)  because  the  only  numbers  used 
in the construction are 0 and 1. The  optimization  problem,  to 
produce an optimal threading,  is  NP-hard. 

Discusion 
We identified the  two critical conditions  goveming  the  compu- 
tational complexity of  protein  threading as whether or not: (i) 
variable-Iength gaps  are permitted in the alignments;  and (ii) 
the score for placing  a  sequence  amino  acid into a  given 
structllte position  depends on the  specific  amino  acid  types  from 
the  sequence  being  threaded  that are placed into neighboring 
(interacting) structure positions. 

The condition  of variabIe-len,gh gaps  plays  a different role 
to  the  condition of pairwise  interactions  between  amino  acids 
from the sequence being  threaded.  Allowing variable-len,~ 
gaps  ensures that the  search  space of possible solutions is 
exponentially  large. Thi s  is necessary,  but  not sufficient, for a 
problem to be NP-complete.  Allowing  painvise interactions 
$erw=en sequence amino acids, on  the  other  hand,  ensures  that 
the solution  must take non-local effects explicitly into account; 
decisions cannot be made  merely by inspecting  a  single amino 
acid at a time, and local changes  can  have  a  non-local 
'ripple' effect 

We proved that if both  these  conditions are allowed,  then 
the  protein thre'ading decision  problem (Does there exist a 
threading with a score SK?) is NP-complete  in  the  strong 
sense, and the related problem of  finding  the globally  optimal 
protein threading is --hard. 

This fact imposes severe  constraints  on  the  design  of  protein 
threading algvrithms. Barring a  significant  breakthrough  in 
computational lheory (Le. a proof  that  P = NP). any  protein 
threading algorithm must  adopt (at least)  one of the  following 
four  choices: (i) it must fail to admit  variable-length  gaps into 
the  alignment; (ii) it must fail to admit interaction preferences 
between amino acids from the sequence being threaded into 
the score function; (iii) it must fail to  find  the  optimal  threading 
in some cases; or (iv) it must  require  an  exponential  amount 
of time in some cases. 

In our categorization of current  protein  threading  algorithms 
in the Induct ion ,  we  gave  at least two examples  from  the 
literature for  each of  these  strategies. 

One general strategy for coping  with NPcomplete problems 
is to reslzict the problem to a  subclass  having a polynomial 
Limesolution. For example,  the  NP-complete  problem  SATIS- 
FIABILITY has a subproblem ZSAT in which  each  clause is 
restricted to exactly  two literals, and  which is solvable in 
polynomial time. If one is fortunate, the restricted problem 
will still  cover the problem  instances  one  actually  encounters 
in practice. This is more likely if one  can identify and  exploit 
particular features  and constraints about the problem  instances 
actually encountered. For example,  the  physical constraint of 
packing amino acids  into space restricts adjacency -g-aphs in 
native proteins to a subclass of  all  possible  graphs. As another 
example, native proteins  requiring  exponential  time  to  fold 
might be strongly  selected  against,  even  though  some  (possibly 
artificial) sequences might  require  it. The hydrophobic  core 
(widely believed to drive folding) is an example of  a  native 
feature which  might  enforce this constraint.  If true, this 
would result in a restricted class of sequences to consider. If 
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discovered,  such restrictions could be reflected in specialized 
threading  and  folding  algorithms. 

Failing this, protein  threading  (and  folding)  algorithms  can 
draw  on  a  wealth  of  computational  methods  that  have  been I 

developed to cope  with  NP-complete  problems. For example, 
the  knapsack  problem  (how  to  pack  objects of different sizes I 
and  values into a finite volume so as to maximize  the  total 
contained  value) is  known to be NP-complete.  but  branch- 
and-bound  algorithms  have  been so successful  that  many 
consider it to be  an efficiently solvable  problem.  even  though 
the  algorithms  involved  (of  course)  have  a  formal  exponential 
time  complexity  (Garey  and Johnson, 1979. p. 9). Packing 
objects into a  knapsack is analogous to packing  amino  acids 
into  a  protein core, and  a  branch-and-bound  algorithm  has 
been  employed  successfully to find the  globally  optimal 
threading in the  general  protein  threading  problem  (Lathrop 
and Smith, 1994). A number of other  computational  techniques, I 

such a& simulated  annealing  and  genetic d g ~ ~  C;ILI be 
used to- find  good  approximate  solutions to NP-complete a ! 
problems. As expected,  researchers  are actively pursuing  each 
of these  avenues. 
The basic  proof  can be used to prove that many threading ' 

methodobgy extensions  and  generalizations are also NP-hard. , 
The  general strategy in  such  cases is to first  show  that  the , 
extended  problem  remains in NP (because  a  putative  solution , 
can be checked  in  polynomial  $me), and then to show  that 
the  problem  has  not  been  made  easier (by exhibiting  some 
setting of the  extended parameters for which  the  extended I 

problem can be made to solve PRO-THREAD). Consequently, 
a  polynomial  time  solution to the  extentled  problem would 
imply a polynomial  time  solution to the simpler  PRO- 
THREAD. Wlthout  producing formal proofs, we sketch this ' 

for three cas& of  interest: (i) allowing a core  element  to  be 
unoccupied  (threaded to a  gap), as some  dynamic  programming 
methods  permit; (ii) the  inclusion  of triplet or higher-order 
terms; and (iii) the  presence of constraint  equations  on  environ- I 

ment labels. Suppose we allow  unoccupied  elements. A method 
for solving this problem  can be made to solve PRO-THREAD 
by using a score  function that assigns any  such  threading  a 
positive  score.  Similarly,  extensions  including  triplet or higher- 
order terms can be made  equivalent to PRO-THREAD  by 
employing a score  function that assigns all such  terms a 
score -0i 0. Extensions  which admitcomtraint~qaations on 
environment labels can  be  made to solve PRO-THREAD by 
adding tautologically true constraint equations to the original 
PRO-THREAD problem. In general,  any  problem  which 
includes  PRO-THREAD as a special case remains  NP-hard. 

Finally, one  might  ask  whether it is necessary to find  the 
globally  optimal  threading at all. Might not a good approximate 
solution be sufficient? In truth, it depends on one's goals. 
Many  threading studies seek  only to pair  sequences  with  the 
structure into which  they will fold. without actempring  to 
actually  place  the  sequence  amino  acids in space.  That is. they 
undertake  only the 'recognition' a s p t  of heading. For this 
purpose,  a  good  approximate  estimate  of  the m e  optimal  score 
may be perfectly satisfactory, since it will only be used 
for comparison  with  other  approximate  scores  from  ocher 
structures. Alternatively,  one  often is interested in actually 
placing amino acids in space. This is, after all, the eventual 
goal  of  protein structure predktion.  Each  different  threading 
corresponds to a different s t r u c t u r e  assignment.  Assuming  a 
perfect score function (a strong  assumption!),  only the globally 
optimal  threading  will be placed correctly in space.  Every 
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approximate solution will  correspond  to a rnisfolded protein. 
Whether  finding h e  globally optimal  threading  is  necessary 
or not  can only be answered  relative  to the goals  that  led  one 
to attempt  the  threading. 
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Appendix 

A formal problem statemenf and proof 
Here  we  give a formal  statement of the PRO-THREAD 
problem  and state a formal proof that it is NP-complete. 
A formal problem statement (PRO-THREAD) 
Table I summarizes  the notational usage of this paper. , 

Let G be a labeled directed graph having a set of vertices 
V = (v,, v,, . . .. vp), a set of edges E = (e , ,  ez. . . .. eJ, a 
set of vertex labels L, and  a set of edge labels L,. Let 9 map 
vertices to vertex labels and edges to edge labels. Let C = 
(Cl, c,, . . ., C,,,) be a partition of V Let Cij denote  the /th 

Table I. Notational usage of this papa 

Notation Usage 

a a sequence of characlm drawn from AA: the concatenation of 

H 
as and a0 

AA 
a subsequence of a 
an alphabet of 20 characters (amino acids) 

h inuanccs of the sequence Cr. F). concatenated to~ether 
as g instances of thc sequence (Q. R S), concateriated togetbu 

a set of BCO~W.~ clausCs  {disjunctions); bk is b e  IG clause 
a set of core sepncm; a  parrition  of V 
a COR segmcn~ thc ilh element  of t; a subset of. V 
a core elcmen~ the jrh element of C; another indexing of a 
vmex of v 
ICJ. the length of the ith cost segment - 
the set of edges i? h e  p p h  G; ei is the ith edge 
a subset of E; thost edges whose tail is q 
the amino acid  phenylalanine 
a function mapping  an  m-mplc  of integers to a number 
a  function  mapping  an edge and  an m-tuple of integers to a 
number 
a function mapping an integer and  an  m-tuple of inteZe& to a 
number 
a function mapping  a vemx and  an  m-tuple of integen to a 
number 
a  labeled, dirtcrcd graph 
IBI. the number  of  Boolean  clauses 
IUI. the number of Bodlcan variables 
a fixed number 
the set of edge (environment) labels of the graph G 
the set of vemx (mvironmcnt) labels of the graph G 
IQ. the number of core  segments 
lal. the length of the sequence a 
the amino a c i d s  glutamine,  arginine.  serine. threonine 
a function mapping vuriccs to vemx labels and edges  to edge 
labels 
a  threading; an m-tuple of integers; 4 is the ith coordinate 
a set of  Boolean  variables; ui is the ith variable 
the set of venices of the graph G; vi is the i t h  venex 
a literal from  a  clause of B 
at = Q, a2 = R a3 = S 
a  function  mapping  a vcrucx  and  an m-tuple of integers 10 a 
character 
a  function  mapping  two  characters and an edge label to a 
number 
a  function  mapping  a subsquence of a to a number 
a  function  mapping  a  character  and  a  vertex label to a numkr 



element of Ci (yielding  a  second  indexing  of V), and let ci = 
ICjk For e E E let head (e)  [respectively rail (e)] return  the 
venex at the  head (respectively tail) of e. 

Let AA be an alphabet of 20 characters  (amino acids) and 
let a = (a,, a2, . . ., a,) be a  sequence of n characters  drawn 
from AA. 

Let t = ( I , ,  h. . . ., r,) be an m-tuple  such that 1 C t l ,  that 
f j  + c; s Ij + 1 f o r l ~ i < m . a n d t h a t r , + c , ~ n + l .  
The  m-tuple t specifies a  threading. 

Let x(v,  t )  be a  function  that  maps vertices to characters  in 
a according to t, defined for Y = Cij as sr(v, t) = afi + j -  ,. The 
function x yields the  sequence  character  (amino  acid)  threaded 
into venex v by t. 

Let q.(u, d) map the character u E AA and  the  vertex label 
d E to a  number.  Let G&, b, d) map  the  characters a, b E 
AA and  the  edge label d E Le to  a  number.  If I is  any 
contiguous  subsequence  of a, let o,@) map I to a  number. 
These are score  functions for vertices (amino acids), edges 
(interacting amino acid  pairs)  and  loop  regions  (gaps), 
respectively. 

Extend these functions  to  a  score  functionf  mapping t to a 
number as follows. Let: 
f&, t) = s v m v ,  th 5(39), t 1) 
fc(e. t> = a,(Nhead (e), 0. x b i l  (e), t). de)), (2) 
fki, t) = 

ad(al, q ,  . . ., a,, - t)), if i = 0, 
ol((ufi + ci, . - ., + I )  - 1)). if 1 =s i < m, (3) 
CS~({Q, + *, . . ., a")), if i = nr: - 
At) = %, 6,(~ t )  + Z, E &e, t )  + &i, t). (4) 

The decision problem is: For given G, s. C, a andf, and a 

Finally, 

fixed  number K, does there exist  a t such that At) S K? 
The UNE-IN-THREE 3SAT problem 
SATISFIA3h$IY, which asks whether  there exists a nth- 
value assignment which satisfies an arbitrary Boolean 
expression,  was  the first problem  shown to be NP-complete 
(Cook, 1971). The proof  that SATSFIABILITY is NP- 
complete is restated in Garey and  Johnson (1939). along. with 
i t s  transformations into 3SAT and ONE-ELTHREE 3SAT. The 
bulk of this section will show that OXE-IN-THREE 3SAT 
(Schaefer, 1978) can be transformed into the  protein  threading 
decision  problem (PRO-THREAD). The transformation of 
PRO-THREAD into the  optimal  protein  threading  problem, 
the find result of this section, is then  immediate. This sequence 
is illus~rated  in  Figure I. 

The well-known 3SAT problem is a  variant of 
S m ? m  in which  each  clause in the  Boolean 
expression is constrained to  have  exactly three literals. The 
ONE-IN-THREE 3SAT  problem  is  a  variant of 3SAT, differing 
only  in that each Boolean c!ause is required to be satisfied by 
exactly  one of the three literals.  It is known to be NP-complete 
(Schaefer, 1978; Garey and  Johnson, 1979. p. 259). 

Let B = ( b l .  b2, . . ., bg)  be  a  collection (a conjunction, 
i.e. logicd AND) of Boolean clauses (disjunctions, i.e. logical 
ORs) with ]bit =.3. I g i =s 3, and let U = (ul, u,, . . .. u h }  
be the set of Boolean variables mentioned in B. 

The decision  question is: Does there exist a  truth-value 
assignment for LI that satisfies all the clauses in B (i.e. makes 
the conjunction  of all the  disjunctions me), and such  that  each 
clause in B has  exactly  one true literal? 
PRO-THREAD is NP-complete 
Theorem. PRO-THREAD is NP-complete. 
Proof. It is easy  to  verify  that PRO-THREAD is in NP since 
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SATISFIABILITY 
1 

3SAT 
1 

ONGIN-THREE 3SAT 
1 

Protein Threading Dedsion Problem (PRO-THREAD) 
1 

Optimal Protein Threading Problem 

Fig. 1. The  sequence of problem  transformations we cmploy, 

u = {~I,U2,U3,U4) 
B = {@I, G,u3), ( G I  U f r  4 1  ( % G r  .4>} 

Fig. 2. Example  of the ONE-N-THREE 3SAT probtn 

a  non-deterministic  algorithm  need miy guess  a particular 
threading  and  check in polynomial  time  whether  its score is 
K or less. 

We transform ONE-IN-THREE 3SAT to PRO-THREAD. 
Figures 2-5 illustrate the  transformation for a simple  example. 

Let B = (b l ,  b2, . . ., bg} be a collection of clauses  with 
lbJ = 3, 1 G i S g. and let U = { u l ,  u2,.  . ., uhJ be the set 
of Boolean  variables  mentioned in B. ?hex make up an 
arbitrary instance of ONE-IN-THREE 3SAT. 

Let a be an amino acid  sequence  with lal = 3g + 2h. Let 
a consist of  two  concatenated  subsequences:  aB,  with laBl = 
3g. which  corresponds to rhe clauses an4 literals of B: and au. 
with lad = 2, which corresponds'; to the truth-value 
assignments of U. aB is composed of g repetitions  of  the 
subsequence of three amino acids (Q, R, S). Let at = Q, a; = 
R and a3 = S. Each Q (respectively each R and each S) 
corresponds to some bi being satisfied by the first (respectively 
the  second and  the third) literal in bi, 1 S i C g. aL: is 
composed of h repetitions of  the  subsequence of two amino 
acids (T, F). Each T (respectively each F) corresponds to a 
truth-value  assignment of TRUE (respectively of FALSE) to 
some variable ui, 1 =s i S h. Although  we  have  provided one 
subsequence (Q, R. S) for each  clause in B and one subsequence 
(T, J?) for each  variable in U, this is only to emure that there 
are sufficient amino  acids for any p s s ~ ~ - I & ~  
3SAT instance. Nowhere do we restrict particuIar clauses or 
variables to panicular  subsequences, and consequently  there 
generally  will be several  admissible headings solving  any 
given ONE-IN-THREE S A T  instance. 

Let C = (Cl, C,, . . .. C, + h }  be a  collection of core 
segments each  one  element  long  (consequently,  overlapping 
core segments are not  a  problem  provided hey are  assigned 
distinct indices  by  the  threading). Core segment Ci, 1 G i 5 g. 
corresponds to clause bi and  the  choice of whether  the first, 
second or third literal in bj satisfies bi. Core segment C, + j ,  

1 S j < h, corresponds to variable uj and  the  choice  of truth- 
value  assignment to ui- 

Let V = { v , .  v?. . . .. P$ + h }  be the vertices of the adjacency 
graph. Identify vertex vi with  core  element C;. I i =s 
g + h. Let E = {e, ,  e?. . . .. e3#} be the set of edges in the 
adjacency  graph.  Edges will connect  vertices  corresponding to 
clauses of B (tail) to venicv corresponding to variables of U 
{head).  Consequently the resulting graph will be bipartite. If 
ui is the  variable  mentioned  in  rhe jlh literal z of bk. then  let 
edge e3(k- I )  + connect  vertices v, (tail) and vg + (head). and 
let edge e3(& - ,, - be labeled by (j. N) if : is negated and by 
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Fig. 3. Truth-value assignmenm solving ye example ONE-IN-THREE 3SAT problem 

\ 

would yield the SUIX t a t h - d u s .  

FI~. 5. Threading solving rhe equivalent PRO-THREAD problem. 

(i. P) if positive. 1 S j d 3 and 1 =s k S g. Let all vertex 
labels be null. 

L e t  the score  functions 6" and q (and hencef,.  andfi) be 
identically 0. Let o,(u, b, 6) be defined by: 
ot(a, 6.4 = 
0, if d = (j, P) and a = T and b = ai and 1 S j S 3, 
0, if d = (i, P )  and a = F and b E (a , ,  a2, a,) and 

0, if d = ci. N) and n = T and b E (a,, a2. a3) and 

0. if d = G, N, and a = F and b = aj and 1 G j =s 3. 
1, otherwise. (5) 
0, corresponds  to be constraint  that  each clause in B be 

satisfied by exactly  one  literal. It is non-0 whenever u E {T, 
FJ, 6 tz {Q. R, S } or d is not a valid edge (environment) 

b + a,and I G j S  3, 

b f a j a n d 1 s j < 3 3 ,  

label, If d = 0, P), corresponding to the jth literal being 
positive,  then a score of 0 corresponds to either: (i) b= aj 
(selecting  the jth literal  to  satisfy the clause) and u = T (the 
variable it mentions is true); or (ii) b # aj and u = F (the 
literal is not selected and  the mentioned variable is false). 
Symmetric  remarks  apply if d = (j. N ) ,  corresponding  to the 
jth literal  being  negated. The 'otherwise' term ensures a non- 
zero score if any of  these  conditions  are not met. 

Hence  the score function f is: 
At) = z r  E .&(e* t) (6) 

= X, E p,tx(head (e ) ,  t). xttail (e) ,  t). s(e). (7) 
The decision  question is: Does there exist a t such that 

at) S O? We show  that  this is equivalent to the original ONE- 
IN-THREE 3SAT problem. 

(*) By construction, if the  original ONE-IN-THREE 3SAT 
1067 
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problem has a solution  then  the  exhibited  threading  problem 
has a threading  with a score of 0. Let  the variables in U be 
assigned the solution truth values. We will  show  that At) = 0 
where t = (ti, t2, . . ., tg + h )  and: 
f i= 

3(i - 1) + I, if I 6 i S g [where 1 E { 1.2 .3)  is the  index  of 
the  unique literal which  was  satisfied in bi]. (8) 

3 g + 2 ( i - g ) - 1 . i f g < i s g + h a n d u i - , = T R U E ,  
3g + 2(i - g), if g < i S g + h and ui-* = FALSE. 
Consider  an arbitrary vertex, vt, such  that 1 C k s g. By 

construction, this corresponds to bh Let 1 E { 1. 2, 3) index 
the unique lirenI satisfying bk under  the wth  values  assigned 
to U. Since r, = 3(k - 1) + I by assumption, x(vk. t) = a[ by 
the structure of aB. 

By construction, vk is the  tail of exactly  three  edges.  Consider 
an arbitrary edge e such that vk = rail (e). By construction, 
e = e3(k - 1) + for some 1 C j C 3. Let z be the j th  literal 
of bk and ui the variable  mentioned by t By  construction, 
head (e) = Y, + i. Four cases arise depending  on  whether z is 
negated and whether j = 1. By  exhaustive case analysis, 

i j = P  t .v.ofq l * + i  s(4 x K 
IxgaFCd? 

no yes TRUE 3g + 2i - 1 (j. P )  T Yes 0 
no no FALSE 3g + 2i (j. P) F no 0 
YCS no mUE 3g + 2i- I (i,N) T no 0 
Yes yes FALSE 3g + 2i (i. N) F Yes 0 

Under all cases q ( e ,  t) = 0, as seen  from  Equation 5. Since 
e was arbitrary, all edges  whose tail is vk must score 0. Since 
vk was an arbitrary vertex  such  that 1 S k 4 g, and by 
constmction only such vertices are  the tails of edges, dl edges 
must score 0. Since the vertex  and  loop scores were identically 
0, we must hbyef(t) = 0. 
(e) ConverseIy, if the  exhibited  threading  problem has a 

threading t with At) = 0 then a set of auth values for U 
solving  the  original  problem  can be read dmctly from 
X(Y, + ;, t), 1 i 6 h. This assignment sets: 

0, 
(vn - i. t) (vi.  t )  = ai? 

- 

u. = 
TRUE. if n(vs + ;, t) = T, (9) 
FALSE, otherwise. 

Let t be a threading such  thatfit) = 0. We will show that this 
assignment soIves  the original ONE-IN-THREE 3SAT 
problem. 

Let bk be an arbitrary clause  from B. By construction, it 
corresponds to vertex vk. Ler E k  = (eltail (e) = v k )  and  order 
Et according to the  order of the subscripts i for e; E Ek (i.e. 
according to the order of the literals in bJ. By  construction. 
lEJ = 3. We must have x[vk, t) = af for some 1 s I s 3. as 
otherwise f,(e. t) = 1 for every  edge e E ,Ek. contradicting 
the  assumption that At) = 0. Likewise,  we  must  have 
Nhead (e), t) E {T, F} €or every  edge e E ,Ek 

Consider the jth edge e E Ek. By constiction. e = 
e3(k - 1) + j .  Let ui be the variable  mentioned  by  the jth literal 
z in bk. Again, four  cases arise depending on whether z is 
negated and whether j = L By exhaustive case analysis. and 
noting that the  values  shown for x(vg + i. t) follow  from 
Equation 5 and the assumDtion that Rt) = 0. 

j = I? de)  n ( v t ; t )  = a,? x(vs - t) t.v. of u, I V. of: 
negated? 

no yes (j. P )  yes T TRUE TRUE 
no no (i. P )  no F FALSE FALSE 
Yes no (j, N) no T TRUE FALSE 
yes yes 0’. N) yes F FALSE TRUE 

It  is  easy  to  see  that z is true  exactly when I = j .  By 
construction this is true for  exactly  one  edge in ,Ek, and 
consequently bk has  exacrly  one Vue literal under this truth 
value  assignment. 
(a) It is easy to verify  that  the  transformation can be 

accomplished in polynomial  time.  Consequently,  the originai 
ONE-IN-THREE 3SAT problem is solvable in polynomial 
time if and only  if  the  corresponding PRO-THREAD problem 
is. Because ONE-IN-THEE 3SAT is known to be NP- 
complete, PRO-THREAD is NPcomplere. B 
Remark In fact, the  proof  shows that PRO-THREAD is NP- 
complete in the strong sense, since h e  only numbers  used  are 
0 and 1. 
The optimal protein threading problem 
The optimal  protein  threading  problem is to find  the minimum 
scoring  threading of a into C, given the  other  parameters as 
described  above. 
Corolfaly. If the  optimal  proJein threading problem has a 
polynomial time  solution  then so does PRO-THREAD. 
Proof: If the  optimal  protein threading problem has a 
polynomial time solution. then  we can find  the  minimum 
scoring  threading  in  polynomial timii, This immediately 
answers the decision  problem of wbethek a threading exists 
with a  score of K or less. B 
Remark This corollary  shows hat  the optimal  protein  threading 
problem is NP-hard. 
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