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SUMMARY

Many signaling systems show adaptation—the ability
to reset themselves after responding to a stimulus.
We computationally searched all possible three-node
enzyme network topologies to identify those that could
perform adaptation. Only two major core topologies
emerge as robust solutions: a negative feedback loop
with a buffering node and an incoherent feedforward
loop with a proportioner node. Minimal circuits contain-
ing these topologies are, within proper regions of
parameter space, sufficient to achieve adaptation.
Morecomplex circuits that robustlyperformadaptation
all contain at least one of these topologies at their core.
This analysis yields a design table highlighting a finite
setofadaptivecircuits.Despite thediversityofpossible
biochemical networks, it may be common to find that
only a finite set of core topologies can execute a partic-
ular function. These design rules provide a framework
for functionally classifying complex natural networks
and a manual for engineering networks.

For a video summary of this article, see the
PaperFlick file with the Supplemental Data available
online.

INTRODUCTION

The field of systems biology is largely focused on mapping and

dissecting cellular networks with the goal of understanding

how complex biological behaviors arise. Extracting general

design principles—the rules that underlie what networks can

achieve particular biological functions—remains a challenging

task, given the complexity of cellular networks and the small

fraction of existing networks that have been well characterized.

Nonetheless, growing evidence suggests the existence of

design principles that unify the organization of diverse circuits

across all organisms. For example, it has been shown that there

are recurrent network motifs linked to particular functions, such

as temporal expression programs (Shen-Orr et al., 2002), reliable
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cell decisions (Brandman et al., 2005), and robust and tunable

biological oscillations (Tsai et al., 2008).

These findings suggest an intriguing hypothesis: despite the

apparent complexity of cellular networks, there might only be

a limited number of network topologies that are capable of

robustly executing any particular biological function. Some

topologies may be more favorable because of fewer parameter

constraints. Other topologies may be incompatible with a partic-

ular function. Although the precise implementation could differ

dramatically in different biological systems, depending on

biochemical details and evolutionary history, the same core set

of network topologies might underlie functionally related cellular

behaviors (Milo et al., 2002; Wagner, 2005; Ma et al., 2006; Hor-

nung and Barkai, 2008). If this hypothesis is correct, then one

may be able to construct a unified function-topology mapping

that captures the essential barebones topologies underpinning

the function. Such core topologies may otherwise be obscured

by the details of any specific pathway and organism. Such

a map would help organize our ever-expanding database of

biological networks by functionally classifying key motifs in

a network. Such a map might also suggest ways to therapeutically

modulate a system. A circuit function-topology map would also be

invaluable for synthetic biology, providing a manual for how to

robustlyengineerbiological circuits thatcarry out a target function.

To investigate this hypothesis, we have computationally

explored the full range of simple enzyme circuit architectures

that are capable of executing one critical and ubiquitous biological

behavior—adaptation. We ask if there are finite solutions for

achieving adaptation. Adaptation refers to the system’s ability to

respond to a change in input stimulus then return to its prestimu-

lated output level, even when the change in input persists.

Adaptation is commonly used in sensory and other signaling

networks to expand the input range that a circuit is able to sense,

to more accurately detect changes in the input, and to maintain

homeostasis in the presence of perturbations. A mathematical

description of adaptation is diagrammed in Figure 1A, in which

two characteristic quantities are defined: the circuit’s sensitivity

to input change and the precision of adaptation. If the system’s

response returns exactly to the prestimulus level (infinite precision),

it is called the perfect adaptation. Examples of perfect or near

perfect adaptation range from the chemotaxis of bacteria (Berg
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Figure 1. Searching Topology Space for Adaptation Circuits

(A) Input-output curve defining adaptation.

(B) Possible directed links among three nodes.

(C) Illustrative examples of three-node circuit topologies.

(D) Illustration of the analysis procedure for a given topology.
and Brown, 1972; Macnab and Koshland, 1972; Kirsch et al., 1993;

Barkai and Leibler, 1997; Yi et al., 2000; Mello and Tu, 2003; Rao

et al., 2004; Kollmann et al., 2005; Endres and Wingreen, 2006),

amoeba (Parent and Devreotes, 1999; Yang and Iglesias, 2006),

and neutrophils (Levchenko and Iglesias, 2002), osmo-response

in yeast (Mettetal et al., 2008), to the sensor cells in higher organ-
isms (Reisert and Matthews, 2001; Matthews and Reisert, 2003),

and calcium homeostasis in mammals (El-Samad et al., 2002).

Here, instead of focusing on one specific signaling system that

shows adaptation, we ask a more general question: What are all

network topologies that are capable of robust adaptation? To

answer this question, we enumerate all possible three-node
Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc. 761



network topologies (restricting ourselves to enzymatic nodes)

and study their adaptation properties over a range of kinetic

parameters (Figure 1B). We use three nodes as a minimal frame-

work: one node that receives input, a second node that transmits

output, and a third node that can play diverse regulatory roles.

There are a total of 16,038 possible three-node topologies that

contain at least one direct or indirect causal link from the input

node to the output node. For each topology, we sampled

a wide range of parameter space (10,000 sets of network param-

eters) and characterized the resulting behavior in terms of the

circuit’s sensitivity to input change and its ability to adapt. In

all we have analyzed a total of 16,038*10,000 z1.6 3 108

different circuits. This search resulted in an exhaustive circuit-

function map, which we have used to extract core topological

motifs essential for adaptation. Overall, our analysis suggests

that despite the importance of adaptation in diverse biological

systems, there are only a finite set of solutions for robustly

achieving adaptation. These findings may provide a powerful

framework in which to organize our understanding of complex

biological networks.

RESULTS

Searching for Circuits Capable of Adaptation
Adaptation is defined by the ability of circuits to respond to input

change but to return to the prestimulus output level, even when

the input change persists. Therefore, in this study we monitor

two functional quantities for each network: the circuit’s sensi-

tivity to input stimulus and its adaptation precision (Figure 1A).

Sensitivity is defined as the height of output response relative

to the initial steady-state value. Adaptation precision represents

the difference between the pre- and poststimulus steady states,

defined here as the inverse of the relative error. We have limited

ourselves to exploring circuits consisting of three interacting

nodes (Figures 1B and 1C): one node that receives inputs (A),

one node that transmits output (C), and a third node (B) that

can play diverse regulatory roles. Although most biological

circuits are likely to have more than three nodes, many of these

cases can probably be reduced to these simpler frameworks,

given that multiple molecules often function in concert as a single

virtual node. By constraining our search to three-node networks,

we are in essence performing a coarse-grained network search.

This sacrifice in resolution, however, allows us to perform a

complete search of the topological space.

For this analysis, we limited ourselves to enzymatic regulatory

networks and modeled network linkages using Michaelis-Menten

rate equations. As described in Experimental Procedures, each

node in our model network has a fixed total concentration that

can be interconverted between two forms (active and inactive)

by other active enzymes in the network or by basally available

enzymes. For example, a positive link from node A to node B indi-

cates that the active state of enzyme A is able to convert enzyme

B from its inactive to active state (see Figure 1D). If there is no

negative link to node B from the other nodes in the network, we

assume that a basal (nonregulated) enzyme would inactivate B.

We used ordinary differential equations to model these interac-

tions, characterized by the Michaelis-Menten constants (KM’s)

and catalytic rate constants (kcat’s) of the enzymes. Implicit in
762 Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc.
our analysis are assumptions that the enzyme nodes operate

under Michaelis-Menten kinetics and that they are noncoopera-

tive (Hill coefficient = 1). In the Supplemental Experimental

Procedures available online, section 10, we show that these

assumptions do not significantly alter our results—similar results

emerge when using mass action rate equations instead of

Michaelis-Menten equations, or when using nodes of higher co-

operativity.

Our analysis mainly focused on the characterization of the

circuit’s sensitivity and adaptation precision, which can be map-

ped on the two-dimensional sensitivity versus precision plot

(Figure 1D). We define a particular circuit architecture/parameter

configuration to be ‘‘functional’’ for adaptation if its behavior falls

within the upper-right rectangle in this plot (the green region in

Figure 1D)—these are circuits that show a strong initial response

(sensitivity > 1) combined with strong adaptation (precision > 10).

In most of our simulations we gave a nonzero initial input (I1 = 0.5)

and then changed it by 20% (I2 = 0.6). The functional region

corresponds to an initial output change of more than 20% and

a final output level that is not more than 2% different from the

initial output. Nonfunctional circuits fall into other quadrants of

this plot, including circuits that show very little response

(upper-left quadrant) and circuits that show a strong response

but low adaptation (lower-right quadrant). For any particular

circuit architecture, we focused on how many parameter sets

can perform adaptation—a circuit is considered to be more

robust if a larger number of parameter sets yield the behavior

defined above.

To identify the network requirements for adaptation, we took

two different but complementary approaches. In the first

approach, we searched for the simplest networks that are

capable of achieving adaptation, limiting ourselves to networks

containing three or fewer links. We find that all circuits of this

type that can achieve adaptation fall into two architectural

classes: negative feedback loop with a buffering node (NFBLB)

and incoherent feedforward loop with a proportioner node

(IFFLP). In the second approach, we searched all possible

16,038 three-node networks (with up to nine links) for architec-

tures that can achieve adaptation over a wide range of parame-

ters. These two approaches converge in their conclusions: the

more complex robust architectures that emerge are highly

enriched for the minimal NFBLB and IFFLP motifs. In fact all

adaptation circuits contain at least one of these two motifs.

The convergent results indicate that these two architectural

motifs present two classes of solutions that are necessary for

adaptation.

Identifying Minimal Adaptation Networks
We started by examining the simplest networks capable of

achieving adaptation (defined as sensitivity > 1 and precision

> 10) for any of their parameter sets. For networks composed

of only two nodes (an input receiving node A and output transmit-

ting node C, with no third regulatory node), there are 4 possible

links and 81 possible networks, none of which is capable of

achieving adaptation for the parameter space that we scanned

(Figure S1).

Next, we examined minimal three-node topologies with

only three or fewer links between nodes (maximally complex
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Figure 2. Minimal Networks (%3 Links) Capable of Adaptation

(A) Adaptive networks composed of negative feedback loops. Three examples of adaptation networks are shown in the upper panel. Each is one member

(shaded) of a group of similar adaptation networks, whose signs of regulations are listed underneath. For comparison, three examples of nonadaptive networks

are shown in the low panel, with their ‘‘defects’’ for adaptation function listed underneath.

(B) Adaptive networks composed of incoherent feedforward loops. The only two minimal adaptation networks in this case are shown in the upper panel. Examples

of nonadaptive networks are shown in the lower panel.
three-node topologies contain nine links). None of the two-link,

three-node networks were capable of adaptation (Figure S2)—

the minimal number of links for this to be functional is three.
The simplest topologies capable of adaptation, under at least

some parameter sets, are eleven three-node, three-link net-

works. These network architectures are listed in Figure 2 along
Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc. 763



with examples of the distribution of sensitivity/precision behav-

iors for the 10,000 parameter sets that were searched (see also

Figure S3). An architecture is considered capable of adaptation

if this distribution extends into the upper-right quadrant (high

sensitivity, high precision). The common features of the networks

capable of adaptation are either a single negative feedback loop

or a single incoherent feedforward loop. Here, we define a

negative feedback loop as a topology whose links, starting

from any node in the loop, lead back to the original node with

the cumulative sign of regulatory links within the loop being nega-

tive. We define an incoherent feedforward loop as a topology in

which two different links starting from the input-receiving node

both end at the output-transmitting node, with the cumulative

sign of the two pathways having different signs (one positive

and one negative). The first row of Figure 2 shows several exam-

ples of three-link, three-node networks capable of adaptation;

the second row shows related counter parts that cannot achieve

adaptation. Overall incoherent feedforward loops appear to

perform adaptation more robustly than negative feedback

loops—they are capable of higher sensitivity and higher precision

as indicated by the larger distribution of sampled parameters that

lie in the upper-right corner of the sensitivity/precision plot.

While it not surprising that positive feedback loops cannot

achieve adaptation (Figure 2A), it is interesting to note that nega-

tive feedback loop topologies differ widely in their ability to

perform adaptation (Figure 2A, lower panel). Notably, there is

only one class of simple negative feedback loops that can

robustly achieve adaptation. In this class of circuits, the output

node must not directly feedback to the input node. Rather, the

feedback must go through an intermediate node (B), which

serves as a buffer. The importance of this buffering node will

be discussed in detail later.

Among feedforward loops (Figure 2B), coherent feedforward is

clearly very poor at adaptation (Figure 2B, lower panel). The three

incoherent feedforward loops in Figure 2B also differ drastically

in their performance. Of these, only the circuit topology in which

the output node C is subject to direct inputs of opposing signs

(one positive and one negative) appears to be highly preferred.

As will be seen later, the reason this architecture is preferred is

because the only way for an incoherent feedforward loop to

achieve robust adaptation is for node B to serve as a proportioner

for node A—i.e., node B is activated in proportion to the activa-

tion of node A and to exert opposing regulation on node C.

Key Parameters in Minimal Adaptation Networks
Two major classes of minimal adaptive networks emerge from

the above analysis: one type of negative feedback circuits and

one type of incoherent feedforward circuits. Why are these two

classes of minimal architectures capable of adaptation? Here

we examine their underlying mechanisms, as well as the param-

eter conditions that must be met for adaptation.

Negative Feedback Loop with a Buffer Node

The NFBLB class of topologies has multiple realizations in three-

node networks (Figure 2A), all featuring a dedicated regulation

node ‘‘B’’ that functions as a ‘‘buffer.’’ We show how the motif

works by analyzing a specific example (Figure 3A), which has a

negative feedback loop between regulation node B and output-

transmitting node C.
764 Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc.
The mechanism by which this NFBLB topology adapts and

achieves a high sensitivity can be unraveled by the analysis of

the kinetic equations

dA

dt
= IkIA

ð1� AÞ
ð1� AÞ+ KIA

� FAk0FAA

A

A + K0FAA

dB

dt
= CkCB

ð1� BÞ
ð1� BÞ+ KCB

� FBk0FBB

B

B + K0FBB

dC

dt
= AkAC

ð1� CÞ
ð1� CÞ+ KAC

� Bk0BC

C

C + K 0BC

(1)

where FA and FB represent the concentrations of basal enzymes

that carry out the reverse reactions on nodes A and B, respec-

tively (they oppose the active network links that activate A and

B). In this circuit, node A simply functions as a passive relay of

the input to node C; the circuit would work in the same way

if the input were directly acting on node C (just replacing A

with I in the third equation of Equation 1). Analyzing the param-

eter sets that enabled this topology to adapt indicates that the

two constants KCB and K 0FBB (Michaelis-Menten constants for

activation of B by C and inhibition of B by the basal enzyme)

tend to be small, suggesting that the two enzymes acting on

node B must approach saturation to achieve adaptation. Indeed,

it can be shown that in the case of saturation this topology can

achieve perfect adaptation. Under saturation conditions, i.e.,

(1-B) > > KCB and B > > K0FBB, the rate equation for B can be

approximated by the following:

dB

dt
= CkCB � FBk0FBB: (2)

The steady-state solution is

C� = FBk0FBB=kCB; (3)

which is independent of the input level I. The output C of the

circuit can still transiently respond to changes in the input (see

the first and the third equations in Equation 1) but eventually

settles to the same steady state determined by Equation 3.

Note that Equation 2 can be rewritten as

dB

dt
= kCBðC� C�Þ;

B = B�ðI0Þ+ kCB

Rt
0

ðC� C�Þdt:
(4)

Thus, the buffer node B integrates the difference between the

output activity C and its input-independent steady-state value.

Therefore, this NFBLB motif, node C —j node B / node C,

implements integral control—a common mechanism for perfect

adaptation in engineering (Barkai and Leibler, 1997; Yi et al.,

2000). All minimal NFBLB topologies use the same integral

control mechanism for perfect adaptation.

The parameter conditions required for more accurate adapta-

tion and higher sensitivity can also be visualized in the phase

planes of nodes B and C (Figure 3A). The nullclines for nodes

B and C (dB/dt = 0 and dC/dt = 0, respectively) are shown for

two different input values. For this topology, only the C nullcline
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The two networks are shown on the top with the key regulations colored to indicate the parameter constraints for achieving perfect adaptation.

(A) Phase planes of the variables B and C for a NFBLB topology. The B nullclines are drawn in black lines and C nullclines in red (solid red for the initial input I1 and

dashed red for the changed input I2). The steady states with input I1 and I2 are the intersections of the nullclines and are highlighted by black and gray dots,

respectively. When the input is changed from I1 to I2, the trajectory (blue lines) of the system variables follows the vector field (dB/dt, dC/dt) (with input I2), which

is denoted by the green arrows. The trajectory’s projection on the C axis is the system’s output and is shown separately right next to the phase plane. (Refer to

Figure 1A for the functional meaning of O1, O2, and Opeak.) Two sets of key parameters (KM’s on B) are used to illustrate their effect on adaptation precision:

K0F0B = 0.1 and KCB = 0.1 for the top panel and K0F0B = 0.01 and KCB = 0.01 for the middle and lower panels. Two sets of rate constants are used to illustrate their

effect on sensitivity: kAC = 10 and k0BC = 10 for the top and the middle panels and kAC = 0.1 and k0BC = 0.1 for the lower panel.

(B) Phase planes for an IFFLP topology. K0F0B = 1 and KAB = 0.1 for the top panel. K0F0B = 100 and KAB = 0.001 for the middle and the lower panels. kAB = 0.5 and

k0F0B = 10 for the top and the middle panels. kAB = 100 and k0F0B = 2000 for the lower panel.
(red curve) depends explicitly on the input through A (Equation 1).

The B nullcline (black curve) does not depend on A. The steady

state of the system is given by the intersection of the B and C

nullclines. Thus, the change in steady state for any input change
is only determined by the movement of the input-dependent

C nullcline (e.g., dashed red curve in Figure 3A). The adaptation

precision is therefore directly related to the flatness of the B null-

cline near the intersection of the two nullclines. The smaller the
Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc. 765



dependence of C on B, the smaller the adaptation error. One way

to achieve a small dependence of C on B, or equivalently a sharp

dependence of B on C, in an enzymatic cycle is through the

zeroth order ultrasensitivity (Goldbeter and Koshland, 1984),

which requires the two enzymes regulating the node B to work

at saturation. This is precisely the condition leading to Equation

2. All NFBLB minimal topologies have similar nullcline structures

and their adaptation is related to the zeroth order ultrasensitivity

in a similar fashion.

The ability of the network to mount an appropriate transient

response to the input change before achieving steady-state

adaptation depends on the vector fields (dB/dt, dC/dt) in the

phase plane (green arrows, Figure 3). A large response, corre-

sponding to sensitive detection of input changes, is achieved

by a large excursion of the trajectory along the C axis. This in

turn requires a large initial jdC/dtj and a small initial jdB/dtj
near the prestimulus steady state. For this class of topologies,

this can be achieved if the response time of node C to the input

change is faster than the adaptation time. The response time of

node C is set by the first term in the dC/dt equation—faster

response would require a larger kAC. The timescale for adapta-

tion is set by the equation for node B and the second term of

the equation for node C—slower adaptation time would require

a smaller k0BC/K0BC and/or a slower timescale for node B. This

illustrates an important uncoupling of adaptation precision and

sensitivity: once the Michaelis-Menten constants are tuned to

achieve operation in the saturated regimes, the timescales of

the system can be independently tuned to modulate the sensi-

tivity of the system to input changes.

Incoherent Feedforward Loop with a Proportioner Node

The other minimal topological class sufficient for adaptation is

the incoherent feedforward loop with a proportional node (IFFLP)

(Figure 2B). In an incoherent FFL, the output node C is subject to

two regulations both originating from the input but with opposing

cumulative signs in the two pathways. There are two possible

classes of incoherent FFL architectures, but only one is able to

robustly perform adaptation (Figure 2B, upper panel): the func-

tional architectures all have a ‘‘proportioner’’ (node B) that regu-

lates the output (node C) with the opposite sign as the input to C.

We denote this class IFFLP.

The IFFLP topology achieves adaptation by using a different

mechanism from that of the NFBLB class. Rather than moni-

toring the output and feeding back to adjust its level, the feedfor-

ward circuit ‘‘anticipates’’ the output from a direct reading of the

input. node B monitors the input and exerts an opposing force on

node C to cancel the output’s dependence on the input. For the

IFFLP topology shown in Figure 3B, the kinetic equations are as

follows:

dA

dt
= IkIA

ð1� AÞ
ð1� AÞ+ KIA

� FAk0FAA

A

A + K0FAA

dB

dt
= AkAB

ð1� BÞ
ð1� BÞ+ KAB

� FBk0FBB

B

B + K 0FBB

dC

dt
= AkAC

ð1� CÞ
ð1� CÞ+ KAC

� Bk0BC

C

C + K0BC

:

(5)

The adaptation mechanism is mathematically captured in the

equation for node C: if the steady-state concentration of the
766 Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc.
negative regulator B is proportional to that of the positive regu-

lator A, the equation determining the steady-state value of C,

dC/dt = 0, would be independent of A and hence of the input I.

In this case, the equation for node B generates the condition

under which the steady-state value B* would be proportional

to A*: the first term in dB/dt equation should depend on A only

and the second term on B only. The condition can be satisfied

if the first term is in the saturated region ((1 � B) [ KAB) and

the second in the linear region (B� K0FBB), leading to

B� = A�$kABK0FBB=ðFBk0FBBÞ: (6)

This relationship, established by the equation for node B,

shows that the steady-state concentration of active B is propor-

tional to the steady-state concentration of active A. Thus B will

negatively regulate C in proportion to the degree of pathway

input. This effect of B acting as a proportioner node of A can

be graphically gleaned from the plot of the B and C nullclines

(Figure 3B). In this case, maintaining a constant C* requires the

B nullcline to move the same distance as the C nullcline in

response to an input change. Here again, the sensitivity of the

circuit (the magnitude of the transient response) depends on

the ratio of the speeds of the two signal transduction branches:

A / C and A / B —jC, which can be independently tuned from

the adaptation precision.

Analysis of All Possible Three-Node Networks:
An NFBLB or IFFLP Architecture Is Necessary
for Adaptation
The above analyses focused on minimal (less than or equal to

three links) three-node networks and identified simple architec-

tures that are sufficient for adaptation. But are these architec-

tures also necessary for adaptation? In other words, are the

identified minimal architectures the foundation of all possible

adaptive circuits, or are there more complex higher-order solu-

tions that do not contain these minimal topologies? To investi-

gate this question, we expanded our study to encompass all

possible three-node networks, each with combinations of up to

nine intra-network links. Again, for each network architecture,

we sampled 10,000 possible parameter sets. Figure 4A shows

a comprehensive map of the functional space, expressed as

the distribution of all topologies and all sampled parameter

sets on the sensitivity/precision plot. Only the regions above

the diagonal are occupied, since by definition sensitivity cannot

be lower than adaptation error (Experimental Procedures).

The vast majority of the circuits lie on the diagonal where sensi-

tivity = 1/error. This very common functional behavior is simply

a monotonic change of the output in response to the input

change, a hallmark of a direct, nonadaptive signal transduction

response. The distribution plot quickly drops off away from the

diagonal as the number of circuits with increasing sensitivity

and/or adaptation precision drops. Overall, only 0.01% of all

1.6 3 108 possible architecture/parameter sets fall within the

upper-right corner of the plot in Figure 4A—i.e., those circuits

that can achieve both high sensitivity and high adaptation preci-

sion. We are interested in topologies that are overrepresented in

these regions. By overrepresentation, we require that the

topology be mapped to this region more than 10 times when
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(A) The probability plot for all 16,038 networks with all the parameters sampled. Three hundred and ninety-five networks are overrepresented in the functional

region shown by the orange rectangle.

(B) Venn diagram of networks with three characters: adaptive, containing negative FBL, and containing incoherent FFL.

(C) Clustering of the adaptation networks that belong to the NFBLB class. The network motifs associated with each of the subclusters are shown on the right.

(D) Clustering of adaptation networks that belong to the IFFLP class.
sampled with 10,000 parameter sets. There are 395 out of 16,038

such topologies.

Analysis of these 395 robust topologies shows that they are

overrepresented with feedback and feedforward loops (Supple-

mental Experimental Procedures, section 4). Strikingly, all 395

topologies contain at least one NFBLB or IFFLP motif (or both)

(Figure 4B). These results indicate that at least one of these

motifs is necessary for adaptation.

Motif Combinations that Improve Adaptation
Comparing the sensitivity/precision distribution plot of all

networks (Figure 4A) with that of the minimal networks (Figure 2),

it is clear that some of the more complex topologies occupy

a larger functional space than the minimal topologies. We

wanted to investigate what additional features can improve the

functional performance in these networks. To address this ques-

tion, we separated the 395 adaptation networks into the two

categories, NFBLB and IFFLP. We then clustered the networks

within each category using a pair-wise distance between

networks. The results, shown in Figures 4C and 4D, clearly indi-

cate the presence of common structural features (subclusters) in

each category, some of which are shown on the righthand side

in the figure. One striking feature shared by some of the more

complex adaptation networks in the NFBLB category is a positive

self-loop on the node B in the case where the other regulation on
B is negative. This type of topology, with a saturated positive

self-loop on B and linear negative regulation from other nodes,

implements a special type of integral control to achieve perfect

adaptation—here the Log (B), rather than B itself, is the integrator

(Supplemental Experimental Procedures, section 5). Another

common feature of the more complex networks, which is present

in both categories, is the presence of additional negative feed-

back loops that go through node B. We found that this feature

also enhances the performance—the networks with more such

negative feedback loops have larger Q values (defined as the

number of sampled parameter sets that yield the target adapta-

tion behavior) than the minimal networks (Supplemental Experi-

mental Procedures, section 12).

Analytic Analysis: Two Classes of Adaptation
Mechanisms
In order to elucidate all possible adaptation mechanisms for more

complex networks, we analyzed analytically the structure of the

steady-state equations for three-node networks. The steady-

state equations for any three-node network in our model can be

written as dA/dt = fA (A*, B*, C*, I) = 0, dB/dt = fB (A*, B*, C*) = 0

and dC/dt = fC (A*, B*, C*) = 0, where A*, B*, and C* are the steady-

state values of the three nodes, and fA, fB, and fC represent the Mi-

chaelis-Menten terms contributing to the production/decay rate

of A, B, and C, respectively. In response to a small change in
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Figure 5. General Analysis for Adaptive Circuits

(A) Relevant equations. The steady-state output change DC* with respect to the input change DI can be derived from the linearized steady-state equations. A zero

adaptation error around a stable steady state requires a zero minor jNj and a nonzero determinant jJj < 0. There are two terms I and II in jNj, and jNj = 0 implies

either both terms are zero or they are equal but nonzero. We are only interested in robust adaptation, i.e., the cases where the condition leading to jNj = 0 holds

within a range of parameters and input values.

(B) NFBLB class of adaptive circuits (I = II = 0). In this category vfC/vA s 0, which means that there is always a link from node A to node C. (Otherwise,

there would be no direct or indirect path from A to C.) Then II = 0 implies that vfB/B is always zero. I = 0 implies that at least one of vfB/vA and v fC/vB is

zero. This condition implies that there is no feedforward loop in this category. In our enzymatic model vfB/vB = 0 can be robustly achieved either

by saturating the enzymes on the node B so that fB does not depend on B explicitly or by adding a positive self-loop on node B so that the dependence

of fB on B can be factored out. An example of the latter is when node B is regulated by itself positively and by C negatively, so that
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the input: I/I+DI, the steady state changes to A*+DA*, B*+DB*,

and C*+DC*, correspondingly. The conditions for perfect adapta-

tion, DC* = 0, can then be obtained by analyzing the linearized

steady-state equations. We refer the reader to Supplemental

Experimental Procedures (section 6) for technical details and

only summarize the main results below (as schematically illus-

trated in Figure 5).

These analyses again indicate that there are only two ways to

achieve robust perfect adaptation without fine-tuning of param-

eters. The first requires one or more negative feedback loops but

occludes the simultaneous presence of feedforward loops in the

network (Figure 5B). In this category, the node B is required to

function as a feedback ‘‘buffer,’’ i.e., its rate change does not

depend directly on itself (vfB/vB = 0) at steady state. This implies

that fB either does not explicitly depend on B (fB = g(A,C))

or takes a form of fB = B 3 g(A,C) so that the steady-state condi-

tion g(A*,C*) = 0 guarantees that vfB/vB = 0 at steady state. In

either case, within the Michaelis-Menten formulation, the

steady-state condition for B, g(A*,C*) = 0, establishes a mathe-

matical constraint aA* + gC* + d = 0 that is satisfied by A* and/

or C*, with a, g, and d constant. This equation plays a key role

in setting the steady-state value C* to be independent of the

input. All the minimal adaptation networks in the NFBLB class

discussed before are simple examples of this case. In particular,

the minimal network analyzed in Figure 3A is characterized by

fB = g(C) when both enzymes on B work in saturation. Hence,

the steady-state equation for the node B reduces to gC* + d = 0

(Equation 3). The case in which fB = B 3 g(A,C) corresponds to

adaptation networks in which node B has a positive self-loop.

The other way to achieve robust perfect adaptation requires

an incoherent feedforward loop, but in this case allowing

for other feedback loops in the network (Figure 5, panel C). In

this category, vfB/vB s 0 and the condition for robust perfect

adaptation implies a form of fB to be fB = aA + g(C)B. The

steady-state condition fB = 0 establishes a proportionality rela-

tionship between B and A: B* = G(C*) A*, where G is a nonzero

function of C*. Thus, the node B here is required to function as

a ‘‘proportioner.’’ All minimal adaptation networks in the IFFLP

class are special cases of this category. For example, the

network in Figure 3B sets B* = constant 3 A* (Equation 6).

Therefore, the above analyses indicate that all robust adapta-

tion networks should fall into one of these two categories, which

can be viewed as the generalization of the two classes of

the minimal topologies for adaptation. Indeed, we found that

all 395 robust adaptation networks can be classified based on

their membership of the broad NFBLB and IFFLP categories

(indicated by the two different colors in Figure 4B).

Design Table of Adaptation Circuits
Our results can be concisely summarized into a design table for

adaptation circuits, as exemplified in Figure 6. Overall, there

are two architectural classes for adaptation: NFBLB and IFFLP.
In each class, the minimal networks are sufficient for perfect

adaptation. These minimal networks also form the topological

core for the more complex adaptation networks that, with addi-

tional characteristic motifs, can exhibit enhanced performance.

Figure 6 illustrates three examples in which such motifs can be

added to minimal networks to generate networks of increasing

complexity and increasing robustness (Q values).

Let us first focus on the example shown in the middle column of

Figure 6. On the top is a minimal network in the NFBLB class.

Adding one C—jB link (or equivalently, adding one more negative

feedback loop) to the minimal network results in a network with

two negative feedback loops that go through the control node

B that has a larger Q value. Note that no more negative feedback

loops that go through B can be added to the network without

creating an incoherent feedforward loop. Adding a link B/C

generates one more negative feedback loop that goes through

B but results in an IFFLP motif. This changes the network to the

IFFLP class—consequently, the adaptation mechanism and

the key regulations on B are changed (C—jB changed from satu-

rated to linear).

In the example shown in the left column of Figure 6, we start

with one of the minimal networks in the NFBLB class that have

inter-node negative regulations on B. Adding a positive self-

loop on B to this type of network significantly improves the

performance. One additional negative feedback loop further

increases the performance. When we arrive at the network

shown at the bottom of the left column, no negative feedback

loops that go through B can be added without resulting in an

incoherent feedforward loop.

In the last example (Figure 6, right column), a minimal IFFLP

network is layered with more and more negative feedback loops

to increase the Q value. A comprehensive design table with all

minimal networks and all their extensions that increase the

robustness, along with the analysis of their adaptation mecha-

nisms, is provided in Supplemental Experimental Procedures,

section 12 and Figure S15. (The readers can simulate and visu-

alize the behavior of these and other networks of their own

choice with an online applet at http://tang.ucsf.edu/applets/

Adaptation/Adaptation.html.)

DISCUSSION

Design Principles of Adaptation Circuits
Despite the great variety of possible three-node enzyme network

topologies, we found that there are only two core solutions

that achieve robust adaptation. The main functional feature of

the adaptation circuits is to maintain a steady-state output that

is independent of the input value. This task is accomplished by

a dedicated control node B that functions to establish different

mathematical relationships among the steady-state values of

the nodes that regulate it (see Supplemental Experimental

Procedures, section 7 for a comprehensive analysis) with the
fB = kBBB ð1� BÞ=ð1� B + KBBÞ � k0CBC B=ðB + k0CBÞzkBBB� k0CB C B=k0CB = BðkBB � k0CB=k
0
CBCÞ, in the limits (1-B) [ KBB and B� K0CB. The terms in the deter-

minant jJjcorrespond todifferent feedback loops as colored in thefigure. Thus, thereshould be at least one, butcanbe two,negative feedback loops in this category.

(C) IFFLP class (I = II s 0). In this category, none of the factors in jNj are zero. This implies the presence of the links colored in the figure and hence a FFL. The condition

for jNj = 0 can be robustly satisfied if the FFL exerts two opposing but proportional regulations on C. The proportionality relationship can be established by fB taking

the form shown in the figure.
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Two examples are shown on the left for the NFBLB class of adaptation networks, which require a core NFBLB motif with the node B functioning as a buffer. One

example is shown on the right for the IFFLP class, which require a core IFFLP motif with the node B functioning as a proportioner. The table is constructed by

adding more and more beneficial motifs to the minimal adaptation networks. The Q value (Robustness) of each network is shown underneath, along with the

mathematical relation the node B establishes.
goal of setting a constant steady-state output C*. Importantly,

these desired relationships necessary for perfect adaptation

are not achieved by fine-tuning any of the circuit’s parameters

but rather by the key regulations on the control node B

approaching the appropriate limits (saturation or linear) (Barkai

and Leibler, 1997). This is the reason behind the functional

robustness of the adaptation circuits of either major class.

Furthermore, the requirements central to perfect adaptation

are relatively independent from other properties. In particular,

the circuit’s sensitivity to the input change can be separately

tuned by changing the relative rates of the control node to those

of the other nodes.

Several authors have computationally investigated the circuit

architecture for adaptation (Levchenko and Iglesias, 2002;

Yang and Iglesias, 2006; Behar et al., 2007). In particular, Fran-
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çois and Siggia simulated the evolution of adaptation circuits

using fitness functions that combine the two features of adapta-

tion we considered here: sensitivity and precision (François and

Siggia, 2008). Starting from random gene networks, they found

that certain topologies emerge from evolution independent of

the details of the fitness function used. Their model circuits

have a mixture of regulations (enzymatic, transcriptional, dimer-

ization, and degradation), and they did not enumerate but

focused on only a few adaptation circuits. Nonetheless, it is

very interesting to note that the adaptation architectures that

emerged in their study seem to also fall into the two general

classes we found here. Further studies are needed to systemat-

ically investigate the general organization principles for the

adaptation circuits made of other (than enzymatic) or mixed

regulation types.
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Biological Examples of Adaptation
A well-studied biological example of perfect adaptation is in the

chemotaxis of E. coli (Barkai and Leibler, 1997; Yi et al., 2000)

(Figure 7). Intriguingly, we found that one of the minimal topolo-

gies (NFBLB) we identified is equivalent to the Barkai-Leibler

model of perfect adaptation (Barkai and Leibler, 1997). In E. coli

the binding of the chemo-attractant/repellant to the chemore-

ceptor R and its methylation level M modulate the activity of

the histidine kinase CheA, which forms a complex with the

chemoreceptor R. CheA phosphorylates the response regulator

CheY, which in turn regulates the motor activity of the flagella.

The methylation level M of the receptor/CheA complexes is

determined by the activities of the methylase CheR and the

demethylase CheB. According to the Barkai-Leibler model,

CheR works at saturation with a constant methylation rate for

all receptor/CheA complexes, independent of the methylation

level M, whereas CheB binds only to the active receptor/CheA

complexes, resulting in a demethylation rate that is dependent

only on the system’s output (CheA activity). Therefore, the

network structure or topology of the E. coli chemotaxis is

very similar to one of the topologies we found (Figure 7), with

the buffer node B corresponding to the methylation level of the

chemoreceptors.

In our theoretical study of adaptation circuits with Michaelis-

Menten kinetics, the IFFLP class consistently performs better

than the NFBLB class. However, there have so far not been clear

cases where IFFLP is implemented in any biological systems to

achieve good adaptation. Does IFFLP topology have some

intrinsic differences concerning adaptation from NFBLB that

are not captured by our study? Is it harder to implement in real

biological systems? Or, do we simply have to search more bio-

logical systems? A clue might be found when we add cooperativ-

ity in the Michaelis-Menten kinetics (replacing ES/(S+K) with
ESn/(Sn+Kn) in the equations; see Supplemental Experimental

Procedures, section 10.2). A higher Hill coefficient n > 1 would

help achieve the two saturation conditions necessary for adapta-

tion in the NFBLB class but would hamper the linearity required to

establish the proportionality relationship necessary in the IFFLP

class. This requirement for noncooperative nodes in the IFFLP

class may effectively reduce its robustness and might be one of

the reasons behind the apparent scarceness of the IFFLP archi-

tecture in natural adaptation systems. The FFL motifs, both

coherent and incoherent, are abundant in the transcriptional

networks of E. coli (Shen-Orr et al., 2002) and S. cerevisiae

(Milo et al., 2002). These transcriptional FFL circuits can perform

a variety of functions (Alon, 2007), including pulse generation—

a function rather similar to adaptation. It is difficult to draw

conclusions from these findings, however, since preliminary

analysis (W.M., unpublished results) suggests that the require-

ments for transcription-based adaptation networks may differ

from those of enzyme-based adaptation networks.

Guiding Principles for Mapping, Modulating,
and Designing Biological Circuits
The general approach outlined here—to generate a function-

topology map constructed from a purely functional perspective—

could be applied to many different functions beyond adaptation.

The resulting function-topology maps or design tables could

have broad usage. First, an increasing number of biological

network maps are being generated by various high-throughput

methods. Analyzing these complex networks with the guidance

of function-topology maps may help identify the underlying

function of the networks or lead to testable functional hypoth-

eses. Second, many biological systems that display a clear

function (e.g., adaptation) have an unclear mechanism or incom-

plete network map. In these cases a function-topology map can
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provide important information about the possible network struc-

ture and its key components, thus helping to design experiments

to fully elucidate the underlying network. Finally, there is growing

interest in learning how to modify cellular networks to generate

new behaviors or optimize existing ones. In medicine, an under-

standing of how specific changes in architecture can shift a

system from one behavior to another could greatly aid in devel-

oping more intelligent therapeutic strategies for treatment of

complex diseases like cancer. In the emerging field of synthetic

biology, this type of function-topology design table could serve

as a manual providing different possible solutions to building

a biological circuit with a target set of behaviors.

EXPERIMENTAL PROCEDURES

Enumeration of Three-Node Topologies

We considered all possible three-node network topologies (Figure 1B). There

are a total of nine directed links among the three nodes. Each link has three

possibilities: positive regulation, negative regulation, or no regulation. Thus

there are 39 = 19,683 possible topologies. We let the input act on node A

and use as the output the active concentration of node C. There are 3,645

topologies that have no direct or indirect links from the input to the output.

We use all the remaining 16,038 topologies in our study.

Equations of the Circuit

We assume that each node (labeled as A, B, C) has a fixed concentration

(normalized to 1) but has two forms: active and inactive (here ‘‘A’’ represents

the concentration of active state, and ‘‘1-A’’ is the concentration of the inactive

state). The enzymatic regulation converts its target node between the two

forms. For example, a positive regulation of node B by node A as denoted by

a link A/B would mean that the active A converts B from its inactive to its active

form and would be modeled by the rate R(Binactive/Bactive) = kAB A(1 � B) /

[(1 � B) + KAB], where A is the normalized concentration of the active form of

node A and 1 � B the normalized concentrations of the inactive form of node

B. Likewise, A—jB implies that the active A catalyzes the reverse transition of

node B from its active to its inactive form, with a rate R(Bactive/Binactive) =

k0AB AB / (B+K0AB). When there are multiple regulations of the same sign on

a node, the effect is additive. For example, if node C is positively regulated

by node A and node B, R(Cinactive/Cactive) = kAC A(1 � C) / [(1 � C) + KAC] +

kBC B(1 � C) / [(1 � C) + KBC]. We assume that the interconversion between

active and inactive forms of a node is reversible. Thus if a node i has only posi-

tive incoming links, it is assumed that there is a background (constitutive) deac-

tivating enzyme Fi of a constant concentration (set to be 0.5) to catalyze the

reverse reaction. Similarly, a background activating enzyme Ei = 0.5 is added

for the nodes that have only negative incoming links. The rate equation for

a node (e.g., node B) takes the form:

dB

dt
=
X

i

Xi$kXi B$
ð1� BÞ

ð1� BÞ+ KXiB

�
X

i

Yi$k0YiB
$

B

B + k0YiB

; (7)

where Xi = A, B, C, EA, EB, or EC are the activating enzymes (positive regulators)

of B and Yi = A, B, C, FA, FB, or FC are the deactivating enzymes (negative

regulators) of B. In the equation for node A, an input term is added to the right-

hand-side of the equation: IkIA(1-A)/((1-A)+KIA). The number of parameters in

a network is np = 2nl+2, where nl is the number of links in the network (including

links from the basal enzymes if present).

Functional Performance

For each network topology, 10,000 parameter sets were sampled uniformly in

logarithmic scale in the np-dimensional parameter space, using the Latin

hypercube sampling method (Iman et al., 1980). The sampling ranges of the

parameters are k�0.1-10 and K�0.001-100. A circuit refers to a network

topology with a particular choice of parameters. The typical output curve of

an adaptive circuit has two steady-state values O1 and O2, corresponding to
772 Cell 138, 760–773, August 21, 2009 ª2009 Elsevier Inc.
the two input values I1 and I2, respectively, and, in response to the input

change, has a transient pulse with the peak value Opeak (Figure 1A). Ill-behaved

circuits are excluded from further analysis. They can be circuits with too small

steady-state values (<0.001) of the active or inactive enzymes, the ones

spending too much time to approach a steady state, or those with persistent

or too weakly underdamped oscillations (Supplemental Experimental Proce-

dures, section 1). The remaining circuits were evaluated for their sensitivity

to input change and adaptation precision.

(1) Precision: the inverse of the adaptation error. The error E is defined as

the relative difference between the output steady states before and after the

input change.

P = E�1 =

�
jO2 � O1j=O1

jI2 � I1j=I1

��1

(8)

(2) Sensitivity: the largest transient relative change of the output divided by

the relative change of the input.

S =
jOpeak � O1j=O1

jI2 � I1j=I1
(9)

It is obvious that S R E since jOpeak � O1j R jO2 � O1j. This implies that

log(S) + log(P) R 0.

The overall performance of a topology is measure by its Robustness or the Q

value, defined here as the number of times the topology is mapped to the high-

sensitivity/high-precision region of the functional space (the green rectangle in

Figure 1D).

Clustering of Networks

There are nine possible links for a network. For every network, we assign

a value to each of the nine links: 1 for positive regulation,�1 for negative regu-

lation, and 0 for no regulation. Thus a network is represented by a sequence of

length 9. We define the distance between two networks as the Hamming

distance between their sequences, that is, the number of regulations that differ

in the two networks. The distance matrix is then used for clustering, using the

MATLAB function clustergram.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, fifteen

figures, and a video summary and can be found with this article online at

http://www.cell.com/supplemental/S0092-8674(09)00712-0.
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