Comparative Analysis of Multiple Protein-Sequence Alignment Methods
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We have analyzed a total of 12 different global and local multiple protein-sequence alignment methods. The
purpose of this study is to evaluate each method’s ability to correctly identify the ordered series of motifs found
among all members of a given protein family. Four phylogenetically distributed sets of sequences from the he-
moglobin, kinase, aspartic acid protease, and ribonuclease H protein families were used to test the methods. The
performance of all 12 methods was affected by (1) the number of sequences in the test sets, (2) the degree of
similarity among the sequences, and (3) the number of indels required to produce a multiple alignment. Global
methods generally performed better than local methods in the detection of motif patterns.

Introduction

Comparison of primary sequence information is
rapidly becoming the major source of data in the elu-
cidation of the molecular mechanisms of replication and
evolution of all organisms. There are basically three lev-
els in the analysis of primary sequence information: (1)
the search for homologues, {2) the multiple alignment
of homologues, and (3) the phylogenetic reconstruction
of the evolutionary history of homologues.

Many multiple sequence alignment programs and
various scoring schemes have been developed to analyze
potential relationships among sequences. Although a re-
view { Myers 1991)and a comparison (Chan et al. 1992)
of some methods from a computational perspective are
available, there are no studies to date that evaluate these
methods from a biologically informed perspective. The

" purpose of this study is to evaluate the ability of existing .

software to correctly identify the ordered series of motifs
that are conserved throughout a given protein family.
There are two biological approaches to the multiple
alignment of protein sequences: one attempts to align
homologous (ancestrally related) features, while the
other attempts to align functionally or spatially equiv-
alent features of a protein family. While there is consid-
erable overiap in the alignments produced by methods
with these two goals, the intents are distinctly different.
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Multiple alignment methods are often used without
knowledge of the assumptions implicit in their operation.
We will assess the major academically produced methods
available, regardiess of their intent, and indicate the as-
sumptions implicit in each of the methods (table 1),
Our basic premise is that, regardless of the final goal, a
method that cannot find the functional motifs that are
highly conserved throughout a given protein family has
diminished value for detecting new biologicaliy infor-
mative patterns.

The multiple protein-sequence alignment problem
may be divided into the following two conceptual steps:
(1) the initial inference of an ordered series of motifs
defining the limits of a protein family and (2) detection
of the ordered series of motifs in other proteins, thereby
expanding the family. Many software packages, both ac-
ademic and commercial, rely on the existence of pre-
viously defined protein families to provide the motifs of
the family. How are such protein-family patterns initially
determined? Among highly conserved sequences (>50%
identity) it is very difficult to deduce which residues of

"a protein are necessary for function or structure, on the

basis of multiple alignment of protein sequences alone.,
Laboratory experiments can provide clues as to which
residues are critical for function and structure, but few
generalizations can be made from such studies, Among
distantly related proteins (<30% identical residues),
however, conserved residues often indicate the essentially
invariable regions of the protein that are necessary for
function or structure. When multiple alignments of such
data are derived, however, it soon becomes apparent
that the currently available methods are not very satis-
factory. Even with the utilization of the most sophisti-
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Table 1
Multiple Alignment Methods
Y
Data
Method (Developer) Algorithm Matrix® Indels Limits® Assumptions® Features$ Type*®
Global:
AMULT (G. Barton) ........... NW Any C Y, S R, SE r
ASSEMBLE (M. Vingron) ....... Dot matrix NW Log odds I+E Y, S p
CLUSTAL V (D. Higgens) ...... WL Any I+E ' . | P, N
DFALIGN (D.-F. Feng) ......... NwW Log odds C up Y,E O P
GENALIGN' (H. Martinez) ..... CW, NwW UM I+E SE P, N
MSA (S. Alischul) ............. CL PAM250 I+E ROS N B, FA P
MULTAL (W. Taylor) .......... NwW UM, PAM250 C S AP, FA p
MWT (J. Kececioglu) ........... maximum Any C ROS N p
weight trace
TULLA (S. Subbiah) ........... NW Any RGW 10 sequences S R, SE P
Local:
MACAW (G. Schuler) .......... Sw PAM250 DOS Y SE, FA, MD P
PIMA (P.Smith) .............. Sw AACH I+E Y MD p
PRALIGN (M. Waterman) ...... CcwW PAM250 I+E* Y MD, MC P, N®

* The matrices are log odds and PAM250 (DayhofT et al. 1978); UM = unitary matrix (Feng et al. 1985); and AACH = amino acid cluster hierarchy (Smith and Smith 1990).
% UP = unpublished parameters; ROS = easily runs out of compuler space, thercby limited to six sequences; and DOS = runs only on a DOS system with Windows,
€Y or N = yes or no to the question Has homology been established?; S or E = multiple alignment is of structural or evolutionary intent; and O = input sequences must be in nearest-neighbor order, and a

program is provided for this purpose.

— R = user-specified no, of iterations for refinement; SE = statistical evaluation is provided; 1 = interactive mode so that user may choose intermediate alignments; FA = specificd region can be forced to align; B

= correction for bias of overrepresentation of sequences; AP = alteration of parameters between iterations; MD = user-specificd motif density; and MC = usec-specified degree of motif conservation,
¢ P = protein; and N = nucleic acid.
! Licensed 1o IntelliGenetics,
8 This indel penalty applies to CWs only.
b A separate program is available for nucleic acids.
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Table 2

Scores for Programs Tested Using Globins

Program and
No. of

Sequences Motif I Motif 11 Motif 111 Motif IV Motif V
Tested (7 residues) (5 residues) (5 residues) (5 restdues) (3 residues) Parameters/Comments*®
Global Methods
AMULT
12 ... 100 100 100 100 100 Single-order alignment; defaults except:
10 ...... 100 100 100 100 100 “indel = 8 (4-10) and iteration = |
6 ...... 100 100 100 100 100 (1-4)
ASSEMBLE;
12 ... 100 92 100 100 100 Defaults except: FIL-SUM algorithm
10 ...... Did not perform alignment, since filter produces empty plots® _
6 .. 100 100 100 100 100 FIL-LOG, T = 8 (8-12)
CLUSTAL V
12 ...... 100 92 100 100 100 Defaults; parameters tweaked are:
10 ...... 100 92 100 100 100 pairwise: indel (1-8) and k-tuple
6 ...... 100 92 100 100 100 (1-2); multiple alignment: I (6-12)
and E (2-10)
DFALIGN:
2 ...... 100 100 100 100 100 Defaults
IQ ...... 100 100 100 100 100
6 ...... 100 100 100 100 100
GENALIGN: ’ )
12 ...... 92 (67, 25)° 100 100 83 (67, 17)° 92 (67, 25) Defaults excepl; match weight = 2; NW
1 ...... 90 (60, 30) 90 90 (50, 40) 80 (60, 20) 90 (60, 30) . S
6 ... 83 100¢ 83 (50, 33)° 67 (2 X 33) 67 (2 X 33) Defaults except: match weight = 1; NW

"
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MULTAL:

12 ...... 100 90 100 _.—~ 100 100 Matrix weight? = 0-5; eycles® = 12;
0 ..., 100 90 100 100 100 indel = 20; window size = [5-50;
6 ...... 100 90 100 100 100 cutoff score = 900-300; span’
’ = §-128¢
TULLA:
0 ...... 90 80 ° 80 80 80 RGW = 2-4-6; median 2 or 4 (2-12)
6 ...... 83 83 83 67 83 RGW = 8 (4-12) -

Local Mcthods

12 ... 75 92 75 67 67 Cutoff score = 30 (20-30); MD = 50%
10 ...... 70 80 70 60 60 (25%-~50%); result list size = 100, for
6 ...... 100 67 100 67 67 all subsets; several overlapping blocks®
PIMA:
12 ...... 100 - 100 100 100 100
0 ...... 100 100 100 100 100 E = 0.33; ML clusters'
6 ...... 100 100 100 100 100 SB clusters’
PRALIGN:
12 ...... 67 67(33,2%17) 75 (33, 25, 17) 67(33,2x17) 84 (67, 17) Window size = 20 (10-40); word size
10 ...... 50 (30, 20) 60 (3 X 20) 60 (3 X 20) 20 50 = 3 (3-5); MC = 1 {0-2); indel
6 ...... 67 (2 X 33) Kk] 13 0 50 = 0; MD = 30% (20%-50%)

NoTE.—The score for each test is calculated as a percentage of the no. of scquences in each data sct in which the motif was identified. Some methods find the correct matches in > 1 subset of the data without
being able to align these subsets to one another. In these cases, the total percent correct match is a combined score of the subsets (values in parentheses). Abbreviations are as in table 1.
* Deviations from default parameters are indicated by a dash for a single data set and by a bracket for two data scts or for new parameters used in all tests. The explored range of parameter values is indicated in

parentheses.
® ASSEMBLE tends to produce only *cotrect” results or nothing.
€ Has gaps in motif(s).
9 Specifies the mix ratio between the identity matrix and the PAM250 (e.g., a weight of 2 indicates a 0.8 [identity matrix] + 0.2 [PAM250} mix).
* Specifies the no. of attempts the program makes to merge subalignments. 4
f Painwise distance upper limit for the comparison of all sequences.
* MULTAL allows the user to change paramieters for ench cycle. Thus, the range shown in some of the parameters indicates the change of that parnmeter for each cycle,
* Creates several blocks for each cluster, One has to manually (with the help of the MACAW editor) merge them to get the percentages for each cluster.
! Creates alignments by using two types of clusters, maximal linkage (ML) clusters (Smith and Smith 1990) and sequence branching ($B) clusters (Smith and Smith 1992).
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Table 3
Scores for Programs Tested Using Kinases

Program and

No. of ’
Sequences Motif' I Motif 11 Motif [11 Motif 1V Motif V Molif VI Motif VII Motif VIII
Tested (6 residues) (1 residue) (1 residue) (9 residues) (3 residues) (3 residues) (8 residues) (1 residue) Parameters/Comments
Global Meu}ods
AMULT:
12 ...... 100 83 92 100 100 100 100 100 Tree-based alignment
10 ...... 100 90 90 100 100 100 100 90 Single order alignment; iteration
6 ...... 100 67 67 100 100 100 100 100 =4(14)
ASSEMBLE:
12 ...... 83 58 (33, 25) 83 100 100 100 100 100 (67, 33) Defaults except: FIL-SUM
algorithm,
10 ...... 90 30 0 100 100 100 100 70
6 ...... 67 ] 0 100 100 100 100 50 FIL-LOG, T = 8 8-12)
CLUSTAL V )
12 ...... 100 92 92 (50, 42) 100 100 100 100 100 (58, 42)  Defaults; parameters tweaked are:
10 ...... 100 80 (50, 30) 80 100 100 100 100 90 (50, 40) pairwise: indel (1-8) and k-
6 ...... 100 83 67 100 100 100 100 100 (67, 33) tuple (1-2); mutltiple alignment:
1(6-12) and E (2-10)
DFALIGN: '
2 ... 100 100 100 100 100 100 100 100 Begin weighting sequence 3 with
. value 2
10 ...... 100 100 100 100 100 100 100 100 Begin weighting sequence 2 with
: value 2
6 ...... 100 100 100 100 100 100 © 100 67 Begin weighting sequence 2 with

value 2
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GENALIGN:

12 ..., 100* 75 (42, 33) 83 100 - 100 100 100 (2 % 50) 92 (67, 25)  Decfnulls except: NW; match
10 ...... 80 (60, 20) 60 (40, 20) 80 100 100 100 (2 X 50) 100 (2 X 50) 20 weight = |
6 ...... 67 50 83(50,33) 100(2x50) 1002 X 50) 100(2x50) 1002 X 50) 83
MULTAL:
12 ... 100 75 (58, 17) 83 (50, 33) .100 100 100 (58, 42) 100 100 Cycles = 14; window size = 15-
10 ...... 100 80 50 100 100 100 100 100 140; cutoll score = 900-200;
6 ...... 83 33 67 100 100 100 100 100 all others as in tablc 2°
TULLA
10 ...... 90* 60 80 100 100 920 90 90 RGW = 8-10-12, median 8
6 ...... 83* 83 (50, 33) 67 100 100 100 100 33 Defaults
Local Methods
MACAW
12 ...... 67 0 75 100 100 83 100 0 Cutoff score = 30 (20-30); MD
10 ...... 70 0 50 100 100 90 90 0 = 50% (20%-50%); result list
6 ...... 100 0 0 100 100 100 100 50 size = 100, for all subsets;
several overlapping blocks®
PIMA:
12 ... 100 92 92 100 100 100 100 100 SB clusters®; E = 0.33 (0.2-1.75)
10 ...... 100 90 100 90 90 90 90 50 (30, 20)  SB clusters?
6 ...... 100 100 67 100 100 100 100 100 SB clusters®; E = 0.5 (0.2-1.75)
PRALIGN: A
12 ...... 100 84 (2 X 42) 50 (33, 17) 33 75 (42, 33) 75 (42, 33) 33 33 Window size = 20 (10-40); word
10 ...... 920 80 (30, 2 X 20) 20 40 70 (40, 30) 60 (2 X 30) 30 30 size = 3 (3-5); MC = [ (0-2)
6 ...... 67 (2 X 33) 67 (2 X 33) 0 0 67 (2 X 33) 67 (2 X 33) 67 (2 X 33) 33 indel = 0; MD = 30%

(20%-50%)

NOTE.~~All designations and abbreviations are as in tables | and 2.

* Sce footnote “c” of table 2.
® See footnotes “d"-"g” of table 2.
¢ See footnote “*h” of table 2.
4 See footnote i of table 2.
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Table 4
Scores for Programs Tested Using Proteases
I f
Program and )
No. of i
Sequences Motif | Motif [1 Motif 111
Tested (3 residues) (5 residues) (3 residues) Parameters/Comments !
Global Methods P
AMULT :
2 ... 92 58 83 Tree-based alignment; SD ordering® . !
0 ...... 90 80 (50, 30) 70 (40, 30) Single-order alignment; indel = 8 (4-10); iteration = |
6 ... 67 0 50 (1-4)
Tree-based alignment; SD ordening ,
ASSEMBLE: ’
12 ...,
10 ...... Did not perform alignment, since filter produces empty plots®
6 ......
CLUSTAL V: |
12 ... 160 75 (50, 25) 50 (2 X 25) Defaults; parameters tweaked arez pairwise: indel (1-8),
19 ... 100 70 (40, 30) 70 (30, 2 X 20) k-tuple (1-2); multiple alignment 1 (6-12), E (2-10)
6 ...... 100 0 67
DFALIGN:
| 100 100 (70, 30) 100 Begin weighting sequence 3 with vahue 2
12 e igg ‘ 128 (70, 30) 12(3) Begin weighting sequence 2 with value 2 )
GENALIGN: - .
12 ...... 92 67 (42, 25)° 58 (25,2 x 17) Defaults except: match weight =\4. deletion weight
=2 NW ‘
0 ...... 90 {70, 20) 50 (30, 20)° 80 (60, 20)° Defaults except: match weight = 2: >
6 ...... 67 33 0
MULTAL:
12 ...... 83 58 (33, 25) 75 (50, 25) Cycles = 14; cutoff score = 900-200; all others as in
10 ...... 90 (50, 40) 70 (30, 2 x 20) 90 (50, 40) table 2¢
6 ...... 50 0 33
TULLA
10 ...... 70 50 (30, 20) 70 (40, 30) RGW = 2-4-6 median 4 (2-12)
6 ...... 33 33 0 RGW = 6~8-10 median 8 (2-12)
Local Methods
MACAW:
12 ... 100 25 67 Cutoff score = 20 (10-20); MD = 25%, 30%, 33%
11 100 30 70 (20%-50%); result list size = 100, for all subsets;
6 ...... 100 0 33 several overlapping blocks®
PIMA:
12 ..., 100 42 (25, 17) 42 (25, 17) SB clusters’
10 ...... 100 60 (40, 20) 70 SB clusters’;, E = 0.33 (0.2-1.75)
6 ...... 100 0 33 SB clusters’
PRALIGN:
12 ... 67 (2 X 33) 42x17 67 (2 X 25,17) Window size = 20 {10-40); word sze = 3 (3-5); MC
0 ..., 100 (40, 2 X 30) 30 70 (30, 2 X 20) = ] (0-2); indel = 0; MD = 30% (20%-50%)
6 ...... 100 (3 X 33) 0 30

NOTE.—All designations and abbreviations are as in tables 1 and 2.

* SD ordering uses the standard deviation between sequence pairs to form an order.
® See footnote “b™ of table 2.
¢ See footnote “'c” of table 2.

¢ See footnotes “d"-"g" of table 2.

¢ See footnote “h™ of table 2.
fSee footnote i of table 2.






Table §
Scores for Programs Tested Using RH N
Program and
No. of
. __EONENCES Motif I Metif Ll Motif liL Motif IV ‘

Global'Methods
AMULT
12 ...... 92 75 (58, 17) 67 (50, 17) 59(25,2X17) Single-order alignment; defaults except:
10 ...... 100 70 60 90 (60, 30) iteration = 4 (1-4)
6 ...... 100 83 (50, 33) 67 80 (50, 33)
2 ASSEMBLE: ‘
12 ...,
10 ...... Tried FIL-LOG and FIL-SUM algorithms for

6 Did not perform alignment, since filter produces empty plots* all
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MULTAL:

12 ...... 92 (75,17 92(58,2x 1IN 75 (50, 25) 83 Cycles = 14; cutoff score = 900~200; All others
10 ...... 100 (70, 30) 90 . 80 (60, 20) 70 as in table 2°
6 ...... 100 ’ 83 67 83
TULLA -
10 ...... 100® - 50 40 B0 (2 X 40) " Defaults except: RGW = 8-10~12 median 8
6 ...... {00 50 67 50
LLocal Methods
MACAW.
12 ...... 58 42 58 17 Cutoff score = 20 (10-20); MD = 25%, 30%,
10 ...... 80 70 70 40 33% (20%-50%); result list size = 100, for all
6 ...... 83 67 67 67 subsets; several overlapping blocks?
PIMA: '
12 ...... 83 75 67(33,2x17) 92 (42, 33, 1) ML clusterss; E = 0.2 (0.2-1.75); I = 5.5 (5-7)
“6’ o }88 (80, 20) lgg gg (40,2 % 20) gg gg: ig; ML clusters®; E = 0.33 (0.2-1.75)
PRALIGN
12 ..., 75 67 (2 X 33) 50 (33, 17) 17 Window size = 20 (10-40); word size = 3
10 ...... 80 80 (60, 20) 40 20 (3-5); MC = | (0-2); indel = 0; MD = 30%
6 ...... 83 67 (2 X 33) 33 50 (20%-50%)

Note.—All designations and abbreviations are as in tables 1 and 2.
* See footnote “b” of table 2.
b Sec footnote “c” of table 2.
¢ See footnotes “d"-*g" of table 2,
4 See footnote “h* of table 2.
¢ Sece footnote “i" of table 2.
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T
HUMA VLsPADKTNVKAAWGxvdKHAGEYGAEALERMFLgPpTT PHP DLS
HAOR MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKT SHP DLS
HADK VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKT PHP DLS
HBHU VHLTPEEKSAVTALWGEV NVDEVGGEALGRLLVVYQZWWQRWIIFESFGDLS
HBOR VELSGGEKSAVTNLWGKV NINELGGEALGRLLVVYEWWORPIFEAFGDLS
HBDK VHWTAEEKQLITGLWGKY NVADCGAEALARLLIVYEWINQR ASFPGRLS
MYHU GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHINWLERIJDEPKHLX
MYOR GLSDGEWQLVLEVWGRKVEGDLPGHGQEVLIRLFETHEIMWLERIYDRFRGLX
IGLOB SPLTADEASLVQSSWKAV SHNEVEILAAVFAAY|y IQNK SQPA GK
GPUGNI ALTEEKQEALLEKQSWEVLEKQNIPAHSLRLFALIIEAA KYV SPLEDSN
GPYL GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDL SPLEKGSS
GGZLB MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPIVRPL DMG

I IJI
D E F
—
HUMA H GSAQTWE KKVADALTNAV AHVDDM PNALSAREEAEARRLR
HAOR H GSAQ : KKVADALSTAA GHFDDM DSALSA JAHELR
HADK H GSAQ A KKVAARALVEAYV, NBEVDDI AGALSK EHAQRELR
HBHU TPDAVMGNPK¥ A KRKVLGAFSDGL AHLDNL KGTPATHEEBIALCDRLE
HBOR SAGAVMGNPK¥ A AKVLTSFGDAL KNLDDL KGTFARMEAHCDRLE
- HBDK SPTAILGNPM E KRVLTSFGDAV KNLDNI KNTFAQ E_ {CDRKLH
MYHU SEDEMRASEDMISREHATVLTALGGIL KKKGHEH EAEIKPWMAQSEATKHK
MYOR TEDEMKASADE K GTVLTALGNIL KKKGQH EAELRPWMAQSEATEKHEK
IGLOB DLASIKDTGAFATEHNTRIVSFLSEVIALSGNTSNAAAV NSLVSK GEDﬂKARGV
GPUGNI EIPE NNPRIQRAHMAVIFRTICESA TELRQKGHAVWDNNTLEKR GSEILKNK
GPYL EVPQ NanLqﬂ {GRVFRKLTYEAA IQLEVNGAVASDATLEKS GSquSKGV
GGZIB RQE SLEQPEEL MTVLAAAQNI ENLPAI LPAVEKHAVEREICQAG
v \'/
I S
- G 1 [ H }

HUMA VDPVNFKLLSHCH ET AAHRLPAEFTPAVHRSLDRFLASVSTVLTSKYR
HAOR VDPVNFRELLAHC)S ug ARECPGEFTPSAH-EMDKFLSKVATVLTSKYR
HADK VODPVNFEFLGHCFEF N¥ AIHHPAALTPEVHESLDKFMCAVGAVLTAKYR
HBHU VDPENFRLLGNV c¥ AEHFGREFTPPVORRAYQRVVAGVANALAEKYH
HBOR VDPENFPNRLGNV *H ARBFSKDFSPEVQ-HwQKLVSGVAHALGHKYH
HBDK VDPENFRLLGDI E¥ AAHFTRDFTPECQRIIOKLVRVVAEALARKYH
MYRU IPVRYLEFISEC Q¥ QSKHEPGDFGADAQ HMNKALELFRKDMASNYKELGFQG
MYOR ISIKFLEYISEA HY QSKHSADFGADAQ'HMGKALELFRNDHAAKIKEPGFQG
IGLOB SAA QFGEFRTAVAYHMQANVS WGDNVA H*NKALlDNTFAIVVPRL
GPUGNI ITDP BEFEVMKGA GT KEAIKENWSDEMGQH TEAYNQLVATIKAEMEKE
" GPYL VDA HFPVVKEA KT KEVVGDKWSEELNTH TIAYDELAIIIRKEKEMKDAA
GGZLB VAAA HYPIVGQE GA KEVLGDAATDDILDH GKAYGVIADVFIQVEADLYAQAVE

F1G. 1.—Muitiple alignment of representative globin sequences. The five motifs scored for in the comparative analysis are indicated by
blackened bars and the numerals 1-V. Black/white reversals of columns within the motifs indicate the most conserved residues of the motifs
and their conservative substitutions, based on the similarity scheme (F,Y), (M,L,1V), (A,G), (T.S), (Q,N), {K,R), and (E.D). If the same
number of matches occurs for more than one residue in a column, then one set is arbitrarily chosen for black/white reversal. The conserved
helices of the globins are indicated by overlined regions and the letters A-H. The set of 12 sequences includes HAHU (human), HACR
{duckbill platypus), and HADK (duck) a-chain hemoglobins and HBHU (human), HBOR (duckbill piatypus), and HBDK (duck) $-chain
hemoglobins. MYHU (human) and MYOR (duckbill platypus) are myoglobins. The remaining hemoglobin sequences are IGLOB (insect,
Chironomus thummi), GPYL (legume, yellow lupine), GPUGNI (nonlegume, swamp oak}, and GGZLB (bacteria, Vitreoscilla sp). The two
other test sets of globin sequences are subsets of these sequences; set 10 = set 12 without HAOR and HBOR, and set 6 is comprised of HAHU,
HBHU, MYHU, IGLOB, GPYL. and GGZLB.

The sequences of the four protein families tested
display a wide range of motif density, motif conservation,
and indels. The globins are highly conserved with few
indels, and the five motifs range in size from three to

seven amino acids (fig. | and table 2). The kinase family
has well-defined indel regions interspersed among eight
highly conserved motif, each of which varies from one
to nine amino acid residues in size (fig. 2 and table 3).
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cAPX porERIXTLEREERSRVMLVKHNE TGNHYAMJILDKQKVVKLKQIBR TLNEKRILQAV NFPeppy
MLCK FSMNSKEALEGEKFHAVCTCTEKS TGLKLAAQVIKKQ TPKDXEM VHMLEIEVHNQL NHERNLZ
PSKH AXYDIKALIER EasnvvxvzunA TRQPYAIYMIETKY REGREV CESHLRVLRRY RHANIY
CD28 ANYKRLEKVEE uu%VVYKALDLRPG QGORVVALJKIRLE SEDEGVPSTAIRRPISLLEELKD DXNTV
WEE] TRFPRNVTLL Ej SEVFQVEDPVE XTLKYAVAKLKVKF SGPKERNR LLOPVSIQRALKGHDHIYV
RAF] SEVMLSTRI E TVYKGEKWHGD VAVISILKVVDPTPEQFQA FRHNEAVAVLRET RHVNIL
CMOS EQVCLLQRLEA GE SVYKATY RGVPVAIMOVNKCTXKNRLASRRS FWARLNVARL RHDNZIY
CSRC ESLRLEVKLEQECHEEVWHGTWN GTTRVAI{TLKPGNMSPEA PLOQPEAQVMKKL RHERLY
VFES EDLVLGEQISR nﬁ BVPSGRLRAD NTLVAV[{SCRETL PPDIKAK FLOEFAKILKQ YSHPNIV
PDGM DQLVLGRTL AYEQVVEATAHGLSHSQATHMRVAVIMLKSTARSSEKQAL MSHLYGDLVDYLHRNKEH
EGFR TEFKKIKVL A !TVYKGLWIPEGE KVKIPVAIYELREAT SPKANKE ILDIBAYVMASY DNPHVC
HSVK MGFTIHGAL®T g Ecvrnssnpn YPQRVIVIJAGWYTST SHEARLLRRL DHPAIL
CAPK KLEFSFKDNWN SNLYM VMEYVPGGEMFSHLRRIG RFSEPHARPYAAQIVLTPEYL
MLCK QLYAAIETP HEIVL PMEYIEGGELFERIVDEDYHLT EVDTHVPVR QICDGILFK
PSKH QLVEVFETQ ERVYM VMELATGGELFDRIIAKGSFT ERDATRVLQ MVLDGVRYL
CD28 RLYDIVHSDA HKLYL VPEPLD LDLEKRYMEGIPKDOQ PLGADIVEKEPMMQLCKGIAYC
WEE]!] ELMDSWEEHG GPLYM QVELCENGSLDRPLEEQGQLS RLDEPRVWRKILVEVALGLQPI
RAF!] LPMGYMTX DNLAI VTQWCEGSSLYKHLHVQET KFQMPQLIDIARQTAQGMDY!L,
CMOS RVVAASTRTPAGS NSLGTIIMEP GGNVTLHQVIYGAAGH(15) LSLGKCLKYSLDVVNGLLFL
CSRC QLYAVVSE EPIYI VTEYHSKGSLLDFLKGEMGKYL RL PQLVDMAAQIASGMAYYV
VFES RLIGVCTQ XQPIYI VMELVQGGDFLTFLRTEGA RLRMKTLLQMVGDAAAGMEYL
PDGM TFLQR HSNEHCPPSAELYSNALPVGFSLP SELNLTGESDG(54) NDSPVLSYTDLVGFPSYQVANGMDFL
EGFR RLLGICLTS TVOQLITQLMPFGCLLDYVREHKDN IGSQYLLNWCVQIAKGMNYL .
ASYK PLLDLHVVSGVTCLVLPRYQ ADLYTYLSRRLN PLGRPQIAAVSRQLLSAVDYI |

N\ A e
caPx HSLDLAYREFRAE ELL IDQQGYI QVT F AKRVEKG RTWTLCGTPEYLARBII 1Ls x
MLCK BXMRVPEL AN TLCYNTTGHLVKRII L ARRYNPNE KLEKVNFGTPEFLSERV VNYD
PSKH HALGITEIZ » gnn YYHPGTDSKIIITIHIELAS ARKKGDDC LMKTTCGTPEYIRBPBEVL VR K
cD28. Hsnnzg ﬂ A8 O¥LL INKDGNL KLG L ARAPGVPL RAYTHEIVTLWYRHEEVL LGGX
WEE] HHENY EL MEASvM ITPEGTL KIG M ASVWPVP RGMERE GDCEYIREBVL AN H
RAF1 HAKNIE-E lﬁSNIIP LHEGLTVEKIG LATVRKSRWSGS QOVEQPTGSVLWM\H2 VIRMQDNN
CMOS HSQSI QL GBAiIL ISBQDVCKIS C SEKLEDLLCFQTPSYPLGGTYTHRHNEBL LKGE
CSRC ERMNYJYED EAA::L VGENLVCKVA L ARLIEDNEYTARQGC ARKPPIRKWTHEBEAA LYGR
VFES ESKCCﬁHE AARWICL VTERNVLEKIS M SREAADGIYAASGGLRQVPVKWT- AL NYGR
PDGM ASKENCHUBINBBAARNVL ICEGKLVKIC L ARDIMRDSNYISKGSTYLPLEWMIEBSTI FN S
EGFR EDRRL AN MAARSVL VKTPQHV KIT L Axnnsazzxzrnazscxvpzxwua ST LH R
HSVK HRQGI Ha ITRWIP INTPEDIC LG AA CFVQGSRSSPPPYGI AGTIDTHNREHEV LAGD

VII
CAPK GYNEAVIWD LgﬁﬂxvzuAAcy PPPFA DQPIQ IYEKIVSCGK VRFPSH
MLCK QISDKT» Lﬁv TYMLLSGL SP FLG DDDTE TLNNVLSGNWY FDEETFEA
PSKH PYTNSV LENMAYILLSGT MP F EDDNRTR LYRQILRGKYSYSGEPWPS
CD28 QYSTGV I!C PAEMCNR KPIFSGDS EIDQIFPK IFR VL GTPN EAIWPDIVYLPDPKP
WEE! LYDKPA- LE TVPEAAANIVLYP DN GQ SWQKLRSG DLSDAPRLSSTDNGS
RAF1 PPSFQSIy TelUfLYELMTGE LP YS RDQI IF MVGRG YASPDLSKLYEK
CMOS GVTPKA "MNTLWQ MTTRQAP YSG ERQHI LY AVVA YDLR PSLSAAV
CSRC  FTIKSH JEUILTELTTKGRVP YPGMVNREVLDQ VERG YRMPCPP
VFES YSSEsk WE WLWETFSLGASP YPNLS NQQT REPVEKG GRLPCPE
PDGM LYTTLSH rr-!LWEIFTLGGTP YPELP MNDQF YNAIKRG YRMAQPA
EGFR 1IYTHQS HE'TVWBLMTPGSKP Y DGIPASEISSILEKG ERLPQPP
HSVK PYTTTV APl IFPETAVENAS LFSAPR GPKRGPCDS
vl
-
CAPK FSSDLKDLLRNL LQVDLTK} PFPGNLEDGVNDIKNHK
MLCK VSDEAKDPVSNL IVRKEQGAEMSAAQCLAHEPWLNNL
PSKH VSNLAKDFIDRL LTVDPGARMTALQALRHPWVVSH
CD28 SFPQWRRKDLSQVVPSLDPRGIDLLDKL LAYDPINFISARRAAIHPYPQES
WEE! SLTSSSR ETPANSIIGQGGLDRVVEWM LSPEPRNEPTIDQILATDEVCWY
RAF] NCPRAMKRLVADCVEKVKEEBNPLFPQILSSIELLQHR
CMOS FPEDS LPGORLGDVIQRCWRPSAAQIPSARLLLVDLTSLEKA
CSRC ECPESLHDLMCQCWRRDPEERPTPEYLQAPLEDYPFT
VFES LCPDAVFRLMEQCWAYEPGQRPSPSAIYQEL
PDGM HASDEIYEIMQKCWEERPETEHPPPSQLVLLLERLLGEGERKY
igpx ICTIDVYMIMVKCWMIDADSHPKFRELITEF SEMAR
VK

QITRIIRQAQVHVDEFS PHPESRLTSRYRSRAAGNNZPPYTR
(PAWTRYYKMDIDVEYLVCKALTPDGALYPSAAELLCLPLFQQK)















produce results at all with our test sets. We attribute this
1o the space limitations of cur computer (Kececioglu
1993). By using a set of six globing with >50% identity,
however, MWT produces the correct alignment {un-
published observanon). An implementation of the ap-
proximation algorithm for MWT that.is space efficient
is in progress (J. Kececioglu, personal communication ).
Future testing will determine whether either MSA or
MWT can correctly identify motifs that define a protein
family. These two methods will not be considered fur-
ther.

Qur comparative analysis indicates three distinct
types of problems in multiple sequence alignment. The
most significant problem encountered is the inability to
merge subsets of sequences in which motifs have been
correctly identified. to provide a single multiple align-
ment (tables 2-5). The giobal method GENALIGN and
the local method PRALIGN exhibit this problem for all
data sets to varving degrees, depending both on the
number of sequences and on which specific sequences
are analyzed {1ables 2-3). In the kinase test, several other
methods—ASSEMBLE, CLUSTAL V, MULTAL,
TULLA, and PIMA—exhibit this problem to a minor
degree. In this case the problem stems from the inability
to recognize single-residue motifs that are common be-
tween subsets (table 3 and fig. 2).

Both the protease and RH data sets have some mo-
tifs that display low motif conservation (e.g., fig. 3, motif
II, and fig. 4, motif [V). Most of the methods exhibit
varying degrees of inability to merge correctly aligned
subsets of sequences. from these more distantly related
data sets (tables 4 anid S). It should be noted that an
additional weighting parameter was developed for
DFALIGN (D.-F. Feng and R. F. Doolittle, personal
communication ) to specifically correct this type of error.
This parameter allows the user to specify an additional
weight (a value of 2 or 3 is sufficient) to be added to the
score for each identical match beginning with a user-
specified sequence. For example, in the kinase test set a
weight of 2 is added for each identical residue common
between sequences beginning with the third sequence.
Use of this parameter is absolutely necessary to achieve
the scores of tables 3-5 for the DFALIGN program. Ex-
treme caution should be exercised in the manipulation
of this parameter even by expert users (R. F. Doolittle,
personal communication ).

The second problem is the degree to which the
number of sequences in the test set affects the ability to
recognize motifs. Most methods perform better with
larger data sets. In some cases, however, even though
the accuracy of identifying motifs increases with the
number of sequences, the inability to merge correct sub-
sets of the data set is introduced into the multiple align-
ment (tables 3-5. comparing sets of 10 vs. 12).
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The third problem, sensitivity to specific sequences
in the data sets, appears to be a more general problem.
One might think that the degree to which a method could
identify motifs would not vary significantly as a function
of addition or deletion of sister sequences to the data
set, but only in the globin test 1s this problem negligible.
Sensitivity to specific sequences is most consistently ex-
hibited by the global methods GENALIGN and
AMULT and by the local method PIMA, although all
methods suffered to a degree from this problem
(tables 2-5).

Discussion

Protein sequences with >350% amino acid residue
identity can usually be unambiguously aligned by many
of the multiple alignment methods currently available.
Among protein sequences with <30% identity, it can be
fairly straightforward to find the ordered series of motifs
when the motifs are well conserved and when few indels
have occurred (table 3 and fig. 2). It is difficult, however,
to discern the ordered series of motifs that define a pro-
tein family and to obtain an adequate global multiple
alignment that can be used in subsequent phylogenetic
inference, if the motifs are not well conserved and if
significant indels have occurred (tables 4 and 5 and figs.
3and 4).

We have identified three specific problems that are
exhibited to various degrees by all the methods tested.
The first, the inability to produce a single multiple align-
ment, could be due to an indel penalty that is too high.
This seems unlikely, since we have varied the indel pen-
alties in most methods without alleviating this problem.
The extra parameter of the DFALIGN method, which
allows the user to increase the weight for matches as the
distance between sequences increases, suggests that the
inability to produce a single multiple alignment from
subsets could be addressed as a matrix problem. Perhaps

‘identical residues common among distantly related pro-

tein sequences should have a higher value, especially if
they occur in small contiguous runs. The point, in the
divergence of a family of protein sequences, at which
such an increase in the values of identities should take
precedence over more standard matrix scores needs to
be investigated. Currently, subsets are merged by ad-
justing the placement of indels and appropriately re-
ducing or increasing the number of indels to produce a
single multiple alignment as a final manual refinement.

The second problem, the sensitivity to the number
of sequences, and the third problem, which specific se-
quences are in the test set, are serious problems. The
increase from 6 sequences to 10 sequences, by the ad-
dition of sister sequences to the test data sets, usually
increases the ability of most methods to identify motifs.
This increase, however, is accompanied by the intro-
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duction of the inability to merge correct subsets. The
addition of only two more sister sequences to the 10-
sequence set, howevey, causes a decrease in identification
of motifs. This effect is most significant for the protease
and RH tests (tables 4 and 5). Why so many of the
methods are sensitive to sequence number and specificity
is an area that warrants further investigation on the part
of the software developers. Such shortcomings should
warn biologists that variation in data sampling could
lead to erroneous conclusions regarding the ordered se-
ries of motifs defining a protein family, as well as the
phylogenetic history of the gene, when these methods
are used.

It is surprising that the global methods perform
better than the local methods in the correct identification
of the ordered series of motifs present in the four different
data sets analyzed (tables 2-5). In addition, methods
{global or local) based on the CW approach perform
poorly compared with all other methods. In light of these
results the biologist-user should exercise caution in the
use of local methods or CW methods, either local or
global, to infer functional motifs.

-1t is obvious that 2 method that ean identify an
ordered series of motifs, in which individual motifs can
vary in both motif density and motif conservation, is
just the first stage of obtaining a structural or evolution-
arily meaningful multiple protein-sequence alignment.
Once this is achieved, the intervening regions of the or-
dered series of motifs must be aligned. Such an alignment
can then be used for phylogenetic reconstruction, for
classification of additional sequences, and for determin-
ing significantly different subsequences among the se-
quences that will provide additional information about
functional properties, e.g., substrate specificity.

We are interested in the development of multiple
alignment approaches that are designed to reconstruct
" the evolutionary relationships between proteins. Such
approaches must not only take into account sequence
identity and conservative substifution based on muta-
tional frequencies and physical and chemical similarities
of amino acids, but must also be able to describe regions
of indels and duplication that can be very useful as phy-
logenetic markers. Methods that only detect highly con-
served motifs, while useful for inferring function, are
insufficient for phylogenetic analysis. If all that is de-
tected between proteins are the functionally or struc-
turally constrained residues and if such regions form the
basis of phylogenetic reconstruction, then one runs the
risk of inferring an incorrect tree topology because of
the increased likelihood of parallel or convergent sub-
stitutions; this problem can be mitigated by considering
sequence information conserved between more closely
related relatives.

The area of computational biology that encom..
passes both sequence-search and alignment algorithrnsA
has created a plethora of methods. In only a few instances
have developers attempted to evaluate the multiple
alignments produced by their methods by comparing
them with experimentally determined structures {Barton
and Sternberg 19874, 1987h; Subbiah and Harnson
1989). The field is now sufficiently developed for ade-
quate testing of methods on real sequence data. It is no
longer sufficient that algorithm developers merely pro-
pose yet another approach to these probiems. It is in-;
cumbent upon the software developers to specify the
limits of new methods on the basis of an adequate sam-
pling of known protein families. Likewise it is the ob-
ligation of the analytical biologist to provide well-con-
trolled tests and to suggest further directions for the
development of new methods for sequence analysis.
Perhaps developers could use the test sequences de-
scribed here to test new approaches versus older ones.
We hope this study not only serves as a guide for multiple
protein-sequence methods for biologists, but that it also
provides an overview of the problem and a language
with which to communicate with the mathematicians,
statisticians, and computer scientists in the field. This
analysis also provides the algorithm developers with a
more informed perspective on the nature of the biolog-
ical pattern recognition in primary sequences.

The ability to infer the ordered series of motifs that
define a protein family is not trivial. While the parameter
values utilized in the various methods analyzed in this
study may serve as a guide for inferring motifs in other
protein sequences, they should in no way be considered
as the parameters that will always find the motifs. The
state-of-the-art strategy for the initial inference of the
motifs defining a protein family from primary sequence
analysis still requires the combination of multiple align-
ment methods and human pattern-recognition skills.
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