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ABSTRACT

Recent developments of statistical methods in molecular phylogenetics are re-
viewed. It is shown that the mathematical foundations of these methods are not
well established, but computer simulations and empirical data indicate that cur-
rently used methods such as neighbor joining, minimum evolution, likelihood,
and parsimony methods produce reasonably good phylogenetic trees when a suf-
ficiently large number of nucleotides or amino acids are used, However, when the
rate of evolution varies extensively from branch to branch, many methods may
fail to recover the true topology. Solid statistical tests for examining the accu-
racy of trees obtained by neighbor joining, minimum evolution, and least-squares
method are available, but the methods for likelihood and parsimony trees arte yet
to be refined. Parsimony, likelihood, and distance methods can all be used for
inferring amino acid sequences of the proteins of ancestral organisms that have
become extinct.

INTRODUCTION

Phylogenetic analysis of DNA or protein sequences has become an important
tool for studying the evolutionary history of organisms from bacteria to humans.
Since the rate of sequence evolution varies extensively with gene or DNA
segment (17, 88, 142), one can study the evolutionary relationships of virtually
all levels of classification of organisms (kingdoms, phyla, classes, families,
genera, species, and intraspecific populations). Phylogenetic analysis is also
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LEAST-SQUARES (LS) METHODS The principle of LS methods is to compute
the minimum sum of squared differences between observed pairwise distances
and estimated pairwise distances (patristic distances) (88).for a given topology
and to choose a topology that shows the smallest minimum sum of squared
differences. Cavalli-Sforza & Edwards (14) suggested that the ordinary or gen-
eralized LS methods can be used for distances computed from gene frequency
data, whereas Fitch & Margoliash (37) used a weighted LS method. Later
Bulmer (9) implemented and formalized the generalized LS method for DNA
and protein sequence data. .
However, LS methods often give negative branch lengths, and mainly for
this reason the accuracy of the topology obtained is not particularly high (74,
111, 112, 121). One way to rectify this problem is to conduct the least squares
estimation of branch lengths with the restriction of no negative branch lengths
(14, 31). Bulmer (personal communication) and Gascuel (39) have shown that
in the case of four sequences, this restricted LS method gives the same results
as those obtained by the neighbor joining method, which is mentioned late_r.
However, this does not seem to be the case when the number of sequences is
greater than four, because neighbor joining also occasionally produces negative

branches.

MINIMUM EVOLUTION (ME) METHODS  In this method, the branch lengths of a
tree are estimated by a certain algorithm from pairwise distance data, and the
total sum (S) of branch lengths is computed for each of the possible topolo-
gies. The topology that shows the smallest S value will then pe chosep as the
most likely tree (23). In this method, branch lengths are estimated either by
Fitch & Margoliash’s algorithm (110) or by the ordinary LS method (_69, 102).
Rzhetsky & Nei (102) presented a formal mathematical treatment of this me.lhod
for DNA and protein sequence data and simplified the computational algorithm
considerably. They (104) also presented a theoretical foundation of this method
by showing.that the expected value of S is smallest for the true topology whfen
unbiased estimators of nucleotide or amino acid substitutions are used as dis-
tance measures. Of course, this does not mean that a tree with the smallest §
value is expected to be the true tree unless a large number of nucieotides or
amino acids are used. X
Kidd & Sgaramella-Zonta (69) suggested that the total branch lengths {L(5)]
be computed by summing the absolure values of all branch lengths under the
conjecture that there are no negative branches for the true topology. Howe\fer,
L(8) does not have a nice statistical property that permits the fast computation
of § values and the statistical tests as developed by Rzhetsky & Nei (102, 104).
Note also that in the presence of statistical errors, some branch lengths may
become negative by chance even for a correct topology (119). Furthermore, if
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one wants to have an ME tree without negative branches, a better way would
be to estimate branch lengths by the least squares method under the constraint
of nonnegative branches.

Although the ME method is statistically appealing, it requires a large amount
of computational time to examine all different topologies if the number of
sequences (i) is greater than 10. For this reason, Rzhetsky & Nei (102, 105)
suggested that the neighbor joining (NJ) tree (see below) be first constructed
and then a set of topologies close to this NJ tree be examined to find a tree
with a smaller § value (temporary ME tree). A new set of topologies close to
this temporary ME tree (excluding previously examined topologies) are now
examined to find a tree with an even smaller S value. This process will be
continued until no tree with a smaller S is found, and the tree with the smallest
$ is regarded as the ME tree. The theoretical basis of this strategy is that the
ME tree is generally identical or close to the NJ tree when m is relatively small
(102, 110) and thus the NJ tree can be used as a starting tree when m is large.
They (105) also suggested that a special type of bootstrapping could be used for
generating topologies for examination. Kumar (77) devised a new algorithm to
obtain an ME tree, extending the NJ algorithm to examine many potential ME
trees. This algorithm does not examine all topologies, but computer simulation
has shown that it almost always examines the true tree even if m is quite large.

FOUR-CLUSTER ANALYSIS In phylogenetic analysis, it is often important to
establish the evolutionary relationships of four groups of organisms. For exam-
ple, the evolutionary relationships of animals, plants, fungi, and protists have
been studied for many decades, yet we do not have a definitive answer, partly
because each group contains so many different kinds of organisms (5, 45, 116,
139). In most methods of phylogenetic analysis the number of organisms to be
included is limited because of computational difficulties. For this reason, only
a few representative organisms are used from each group, but this procedure
often gives erroneous conclusions (2).

The four-cluster analysis (101) is an application of the theory of the ME
method (104) and can handle a large number of species from each group of
organisms as long as each group is known to be monophyletic, and it does
not require any information regarding the branching order of organisms within
groups. Let A, B,C, and D be the four monophyletic groups or clusters,
and suppose that A, B, C, and D contain m4, mg, me, and mp sequences,
respectively, In this case, there are three possible unrooted trees of clusters,
i.e. Ty = ((AB)(CD)), T; = ((ACYBD)),and Ty = ((AD)(BC)), and one
of them must be correct. This correct tree is expected to have the smallest sum
of branch lengths. Let 8}, 53, and S be the sums of branch lengths for trees
T), T, and Th. To compute $;, Sy, and $i, we have to know the phylogenetic
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several groups of vertebrate organisms (11, 12). Analyzing mitochondrial gene
data for 11 vertebrate species, Russo et al (100) showed that protein sequences
are more reliable than DNA sequences for obtaining the correct phylogeny.

Maximum Parsimony (MP) Methods

In MP methods, a given set of nucleotide (or amino acid) sequences are consid-

ered, and the nucleotides (or amino acids) of ancestral sequences for a hypothet-

ical topology are inferred under the assumption that mutational changes occur

in all directions among the four different nucleotides (or 20 amino acids). The

smallest number of nucleotide substitutions that explain the entire evolutionary
wocess for the given tgpology is then computed. This computation is done
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fast evolving sites (26, 124). In this.case, the tree length no longer gives an

" estimate of the minimum number of nucleotide substitutions, but this method

substantially improves the probability of obtaining the correct topology (60,
91). One problem with this approach is that we do not know the actual R
value for the data set under investigation. In this case, it is possible to use a
so-called dynamically weighted parsimony method (113, 141). In this method,
a probable R value is first used to generate an MP tree, and then a new R
value is estimated from the tree obtained. This new R value is then used to
generate a new MP tree. (In practice, all different nucleotide pairs are weighted
differently.) This process is repeated until a stable MP tree (or trees) is obtained.
This js a time-consuming method and does not guarantee the convergence of
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one problem, which is how to choose a set of potentially correct trees, partic-
ularly when the number of sequences is large. Kishino et al (72) proposed an
ad hoc procedure to solve this problem, but its utility is still untested.

MPTREES ~As mentioned earlier, it is difficult to develop any parametric test
for MP trees because of the nonrandom nature of “minimum numbers of
§ubstitutions.” Templeton (135) suggested a nonparametric test for compar-
ing two topologies that is similar to Kishino & Hasegawa’s (71) test for ML
trees. However, the null hypothesis of this test is also unclear in relation to the
topologies to be compared. Probably the best way of testing the reliability of
inferred MP trees would be Felsenstein’s bootstrap test, though one has to be
cautious about the possibility of inconsistency of MP methods (see below).

MERITS AND DEMERITS OF DIFFERENT
TREE-BUILDING METHODS

Criteria of Comparison

Because there are many different tree-building methods, one is naturally inter-
es.ted in the merits and demerits of different methods. There are several different
criteria for comparing different tree-building methods. Important ones are (a)
computational speed, (b) consistency as an estimator of a topology, (c) statisti-
cal tests of phylogenetic trees, (d ) probability of obtaining the correct topology,
and (e) reliability of branch length estimates,

The computational speed of each tree-building method can be measured
re!alively easily, though it depends on the algorithm used. According to this
criterion, the NJ method is superior to most other tree-building methods which
are currently in use. This method can handle a large number of sequences
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approaches infinity (27). The NJ, ME, and LS methods are a consistent es-
timator if unbiased estimates of nucleotide substitutions are used as distance
measures (19, 102, 112), and so is the ML method when the correct model of

* nucleotide substitution is used (148). By contrast, MP is often inconsistent,

as mentioned earlier. In practice, however, n is usually of the order of hun-
dreds to thousands, and in this case even NJ, ME, LS, and ML may fail to
produce the correct tree with a relatively high probability when MP fails (60,
62, 115). Therefore, consistency is not always a useful criterion for comparing
the efficiencies of different tree-building methods.

We have already discussed statistical tests of phylogenetic trees for several
different tree-building methods. At present, the statistical methods for testing
NJ and ME trees are well established. Solid statistical tests are also available
for trees obtained by the generalized LS method (9, 137). In the case of ML

_ methods, however, there seem to be many complications, as mentioned above.

The best method for testing MP trees is probably Felsenstein’s bootstrap test,
as long as the cases of inconsistency are avoided (30).

The probability of obtaining the correct topology is probably the most im-
portant criterion for comparing different tree-building methods, but this is also
the most difficult problem to study. During the past 15 years, many authors
have studied this problem, yet we do not have a clear-cut answer, as is discussed
below. Another important criterion for comparing different methods is the re-
liability of branch length estimates. Once the correct topology is obtained for
a given data set, this problem can be studied relatively easily. Theoretically,
ML, LS, NJ, and ME are expected to give more reliable estimates of branch
lengths than MP. At present, MP (and sometimes ML) trees are almost always
presented without branch length estimates. This practice is regrettable because
it gives a distorted picture of a phylogenetic tree. Since computer programs are
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THEORETICAL STUDY When the number of sequences examined (m) is small
(four or five), it is possible to evaluate Pr analytically for the NJ, LS, and
MP methods (111, 119, 155). These studies have shown that when the evo-
lutionary rate is more or less constant for all four or five sequences, NJ has
a slightly higher Pr value than MP, which in turn has a somewhat higher Pr
than Fitch & Margoliash’s (37) LS method (111). Both the ordinary and gen-
eralized LS methods are inferior to the ME method in obtaining the correct
topology (103). This inferiority seems to be partly due to the fact that the LS
methods often generate negative branches, as mentioned earlier. However, an-
alytical evaluation of Pr is very difficult when m is large, and the conclusion
obtained from these studies may not apply to a wide variety of situations. No
study has been made for ML trees even in the case of m = 4. For this rea-
son, comparison of Pr among different methods is usually done by computer
simulation.

COMPUTER SIMULATION  If we use computer simulation, Pr’s can be estimated
for a variety of evolutionary conditions. Thus, a large number of simulation
studies have been done during the past 15 years. The results obtained before
1990 have been summarized by Nei (89), but there are many recent studies (40,
48, 50, 60, 61, 74, 91, 102, 115, 148, 150). It is not easy to summarize these
studies because different authors considered different evolutionary models and
used different computer algorithms.

One of the most popular model trees used in computer simulation is the
unrooted tree of four sequences in the form given in Figure 1(D), where g,
b, and c represent the expected number of nucleotide substitutions per site.
When @ = b = c¢ and a is greater than 0.1 but smaller than 0.5, almost any
tree-building method produces the correct topology if n is greater than 100.
Therefore, this model tree is not useful for discriminating the efficiencies of
different methods. For this reason, many authors have assumed a > b. If we
use the Jukes-Cantor model of nucleotide substitution, the MP method becomes
inconsistent when b = ¢ = 0.05anda > 0.394 (134). Therefore, MP always
fails to produce the correct tree when a large number of nucleotides is used.
However, NJ and ML usually recover the correct tree in this case if a < 0.5.

Some authors (59) have used cases of an extremely high degree of sequence
divergence (a = 2.83; pdistance = 0.65,andb = ¢ = 0.05; p = 0.05) to
show a superiority of ML methods. However, such divergent sequences are
almost never used in practice because of the difficulty of sequence alignment.
Therefore, such a study is not biologically meaningful. For the same reason, a
large part of computer simulations conducted by Huelsenbeck (60) also do not
seem to be biologically meaningful (91). Although he considered the complete
two-dimensional space for g and b = ¢(0 < p < 0.75; 0 < corrected distance
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d < 00) for the sake of completeness, actual data used for phylogenetic analysis
fall into a relatively small portion of the space near the origin (108). When b
and c are of the order of 0.05 and 0.1 < a < 0.5, MP is generally less efficient
than NJ, which is in turn less efficient than ML (48, 50, 60, 134). However,
when a, b, and c are all of the order of 0.01 ~ 0.025 and n is about 1000, all
three methods reconstruct the true tree quite easily (134).

Note that the comparison of different tree-building methods is not always
straightforward when a complicated model of nucleotide substitution is used,
because appropriate computer programs are not always available. Thus, Tateno
et al (134) compared the robustness of MP, NJ, and ML using available com-
puter programs for the case where the substitution rate varies among nu-
cleotide sites following the gamma distribution. Since the computer program

" for ML was not available, their comparison of NJ and ML was not adequate.

Using a newly developed ML algorithm with the gamma distribution (147),
Huelsenbeck (61) attempted to rectify Tateno et al’s inadequate comparison
between NJ and ML, However, he used a continuous gamma distribution for
NJ but a discrete version for ML. Although this difference would not affect
the final conclusion significantly, it illustrates a difficulty in computer simu-
lation. This problem is compounded by the fact that for the NJ or ME meth-
ods, biased distance measurers often give a higher Pc value than unbiased
distances. -

The model tree (D) in Figure 1 obviously does not cover all possible types
of trees for four sequences. The model tree (E) is different from tree (D) in
that two long branches with length a are now neighbors and two short branches
with length b are also neighbors. Interestingly, this model tree gives different
relative Pr values compared to those for tree (D). Some results for the two trees
are given in Table 1. In tree (D), ML gives the highest Pr value among the three
methods ML, MP, and NJ, and NJ with p distance shows the lowest value. In
tree (E), however, ML gives the lowest P, whereas NJ with p distance gives the
highest. Furthermore, both unweighted and weighted MP show much higher
P;’s than ML. These results were obtained apparently because in parsimony
and NJ with p distance short branches tend to attract each other. Yang (150) has
also shown that even when the evolutionary rate is constant, ML can be inferior
to unweighted MP. These results indicate the difficulty of obtaining a general
conclusion about the relative efficiencies of different tree-building methods,
even for the simplest case of m = 4.

A number of simulation studies have been done for the cases of six or more
sequences, although it is difficult to consider more than a dozen sequences.
When m is very large, the interior branch lengths become very small if we want
to make the most divergent sequence pair biologically reasonable (4 < 1.0). For
this reason, Pr becomes very low for any method, and an enormous amount
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Tuble 1 Percent probabilities of obtaining the correct tree topology

—

Number Tree D - Tree B

Nucleotides NJ MP ML NJ MP ML
{n) p X X2 UW W P JC K2 Uuw w

100 4 638 72 47 64 76 98 13 74 88 96 64
200 4 79 81 52 80 84 100 83 82 97 9 76
300 43 87 88 59 80 92 100 88 86 98 100 82
500 35 %4 95 62 89 97 100 9 94 100 100 90
800 29 96 96 63 94 9 100 98 96 100 100 94
1000 35 99 99 66 98 100 100 99 99 100 100 96

In bothtrees D and £ in Figure I, @ = 0.4, b = 0.1, and ¢ = 0.05 were assumed. Sequences data were gencrated

by using Kimura's (70) two-parameter model with a transition/transversion tate ratio of 2, and the method of

simulation was the same as that of Nei et al (93),

Abbreviations: NJ, neighbor-joining method; p, p distances; JC, Jukes-Cantor distance; K2, modified Kimura
distance (32); MP, maximum parsimony method; UW, unweighted; W, weighted; ML, maximum likelihood
method.

of computer time is required (77, 133). The model trees considered usually
represent the case of constant rate or its modifications (50, 110, 112, 121,
122). In some of these studies (110, 121), the exhaustive search of MP or ML
trees was not done because of an excessive computer time required, but the
true topology was always included. Therefore, the simulations were somewhat
more favorable for MP or ML than for NJ. In general, these simulation studies
have shown that ML is as good as or better than NJ, which is in turn often
better than MP. However, the number of these studies is quite limited, and it is
difficult to extrapolate these results to other cases.

A somewhat different type of simulation was conducted by Kuhner &
Felsenstein (74). They generated a model tree of 10 sequences following the
branching process in statistics in each replication, and the sequence data gener-
ated according to this model tree were used to reconstruct a phylogenetic tree.
" The topology of this tree was then compared with that of the model tree, The
topological difference between the model tree and the estimated tree was mea-
sured by the number of the nonidentical sequence partitions between the two
trees being compared (dT) (96). They considered a case of low divergence with
an expected value of the root-to-tip branch length equal to 0,0193 and a case of
high divergence with an expected value of 0.193. The average 4T values for the
low divergence case with a constant rate were 1,95, 1.82, and 1.64 for MP, NJ,
and ML, respectively when n = 1,000, whereas dT''s for the high divergence
case were 0,68, 0.67, and 0.54 for MP, NJ, and ML, respectively. Therefore,
on the basis of dT values, ML is better than NI, which is in turn slightly better
than MP. However, the differences in dT among the three different methods are
very small. Note that the above comparison was done with very special types
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of model trees that seem to have had very short interior branches occasionally.
(None of the model trees used was published,) Therefore, many inferred trees
should have had multifurcating nodes, yet the authors did not treat them as such;
they accepted whatever resolution of the multifurcation a particular computer
algorithm produced. Here again, we see an example where the comparison of
different methods is algorithm-dependent. Note that ML algorithms often give
zero branch lengths even if the true tree is apparently bifurcating (16).
Despite many recent computer simulations, the interpretation of the results
is not as straightforward as was originally expected, and more careful studies
are needed to know the relative efficiencies of different methods. However, it is
now clear that any method is not almighty, and there are situations in which one
method is more efficient than others in obtaining the true tree and that, unless

" the evolutionary rate varies drastically with evolutionary lineages, all the three

methods considered here generally give the same or similar topologies (110).
Computer simulations have also indicated that one of the most important factors
is the number of nucleotides or amino acids used per sequence and that if this
number is small, one cannot produce reliable trees.

TESTS BASED ON KNOWN PHYLOGENIES  Although it is generally difficult to
know the true topology in real data analysis, there are a few such cases. One
is a phylogenetic tree experimentally produced by artificial mutagenesis with
T7 phages (58). However, this type of experiment produces only one or a
few replications, so it is difficult to compare different methods statisticaily.
Furthermore, the pattern of nucleotide changes produced by mutagens seems
to be somewhat unusual (8). It is thus unclear whether we can extrapolate the
results obtained from these experiments to real cases.

However, there are few instances in which the phylogenetic tree for a group
of organisms is firmly established on the paleontological and morphological
bases. One such example is given in Figure 2(A). The complete nucleotide
sequence of mitochondrial DNA (mtDNA) has recently been published for the
11 vertebrate species given in this figure. MIDNA in these species contains 13
protein-coding genes, the number of shared codons for each gene varying from
52t0 582. A phylogenetic tree was reconstructed for each of these genes and for
the entire set of genes (3682 codons), and the trees obtained were compared with
the true tree (100), In this study, amino acid sequences rather than nucleotide
sequences were used, because the former produced more reliable trees.

When all 13 genes were used, all tree-building methods (NJ, ML, and MP)
produced the correct tree imespective of the algorithm used. A few genes
(usually large genes) such as Nd5, Cytb, and Co3 also produced the correct or
nearly correct topology. However, some genes (e.g. Co2, NdI, Nd3, and Nd4!)
almost always produced incorrect trees regardless of the method and algorithm
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- Figure 2 (A) Known phylogeny for 11 vertebrate species. The total amino acid sequences of
13 coding genes of mitochondrial DNA produced the correct phylogeny with a bootstrap value of
100% for each interior branch. (B) When the lamprey and sea urchin sequences were added, an
incorrect topology was produced with high bootstrap values.

used. This result clearly indicates that some genes are more suitable than others
in phylogenetic inference and that all the tree-building methods tend to produce
the same topology whether the topology is correct or not. Similar results were
obtained by Kumazawa & Nishida (80). Since only 13 genes were studied, it
was difficult to evaluate the relative efficiencies of the different tree-building
methods. In general, however, sophisticated methods such as the ML method
with Jones et al's substitution model were no better than simple methods such
as NJ with p distance or ML star-decomposition algorithm. Similar results
were obtained by Cao et al (11, 12). These results suggest that the pattern
and the rate of amino acid substitution vary with a group of organisms (also
with evolutionary time) and thus sophisticated mathematical models do not
necessarily generate better results,

However, a surprising result was obtained when the lamprey and sea urchin
sequences were added to the 11 sequences in Figure 2(A): a clearly wrong tree
[Figure 2(B)] was obtained by all tree-building methods even when all genes
were used, and a bootstrap test showed strong statistical support for this wrong
tree! The reason for this is unclear, but the unusually slow rate of evolution of
fish genes and the change in the pattern of amino acid substitutions with: site
and time (76) seem to be contributing factors,

Empirical studies of a few cases of known phylogenies have shown that
when the sequences used are relatively closely related the correct phylogeny is
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generally obtained as the number of codons or nucleotides increases but that
the topology of distantly related sequences may well be incorrect even when a
large number of codons or nucleotides are used and a bootstrap test may give
strong statistical support for it.

THE MOLECULAR CLOCK AND LINEARIZED TREES

The molecular clock is one of the most important concepts in molecular evo-
lutionary genetics, yet it has been controversial for many decades (21, 36, 82).
Strictly speaking, the rate of nucleotide or amino acid substitution would never
be constant over the entire evolutionary process because nucleotide or amino
acid substitution is a complicated process that is dependent on the evolution-

“ary stability and functional changes of genes. Therefore, if we study a large

number of nucleotides or amino acids and the extent of sequence divergence is
sufficiently large, we would surely be able to detect the heterogeneity of evo-
lutionary rate. Yet, the extent of rate heterogeneity is usually moderate when
relatively closely related sequences are used, so that one can use an approxi-
mate clock to obtain rough estimates of times of divergence between sequences
from molecular data. Actually, a number of molecular evolutionists (75, 136)
have attempted to estimate divergence times even when the molecular clock
fails.

To use a molecular clock for estimating divergence times, however, it is
important to test the applicability of a clock for the data set under considera-
tion. If a molecular clock does not hold, we must identify and eliminate the
sequences that deviate significantly from the assumption of rate constancy. Af-
ter elimination of these sequences, we can reestimate the branch lengths of
the tree for the remaining sequences under the assurhption of rate constancy.
A tree constructed in this way is called a linearized tree and can be used for
estimating the divergence time of any pair of sequences provided that the rate
of substitution can be estimated from other sources such as fossil records or
geological dates (130). In this case, the test of a molecular clock need not be
very strict, because the estimates of divergence times obtainable are generally
very rough. Actually, we may retain certain important sequences even if they
evolve significantly faster or slower than the average, unless they distort the
tree substantially.

A commonly used test of the molecular clock is the relative rate test for three
sequences (36, 87, 125, 145), but this test is not appropriate for our purpose. We
need a test that is applicable for many sequences simultaneously. Felsenstein
(29) suggested that for trees constructed by distance methods the test be done
by comparing the least-squares residual sums obtained under the assumption
of rate constancy (R¢) with that for the case of no such assumption (Ry) using
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