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1 Related works and optimization functions

Recently, some optimization algorithms based on Potts models which used to detect com-

munity structure have attracted attention. Communities correspond to Potts model spin

states, and the associated system energy indicates the quality of a candidate partition.

Let A be the adjacency matrix of graph G and let σi denote the label of the commu-

nity that node i belongs to. Furthermore, the Kronecker Delta function is defined by

δ(σi, σj) = 1 if σi = σj and δ(σi, σj) = 0, otherwise. Having the community membership

labels σ, Reichardt & Bornholdt (RB) [1] proposed a generalized Hamiltonian as the core

energy function,

HRB({σ}) = −1

2

∑
i̸=j

(aij − γRBpij)δ(σi, σj). (1)

where γRB is the resolution parameter, pij ∈ R is the random form of adjacent matrix

A = (aij). In general, two typical null models for statistical tests can be considered: (i)

an Erdős-Rnyi null model (RBER) in which all edges are equally likely to be connected

and the corresponding energy function can be expressed as follows,

HRBER({σ}) = −1

2

∑
i̸=j

(aij − γRBp)δ(σi, σj). (2)

and (ii) the configuration null model (RBCM) in which edge connection probabilities are

based on the current graphs degree distribution with the following corresponding energy

function,
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HRBCM({σ}) = −1

2

∑
i̸=j

(aij − γRB
kikj
2m

)δ(σi, σj). (3)

where ki denotes the degree of node i. It worth to mention that Modularity measure is

special case of RBCM when γRB = 1.

Using a more general probabilistic model, Hofman & Wiggins [2] introduced the gen-

eralized energy function and then optimized it using a variational Bayes approach,

EHW ({σ}) = −1

2

∑
i ̸=j

(WLaij −WG)δ(σi, σj) +
1

2

K∑
µ=1

πµ

n∑
i=1

δ(σi, µ). (4)

where WG = log 1−pout
1−pin

, WL = log pin
pout

+WG, pin(pout) is the probability that two nodes

are connected when they are in the same (different) community, πi is the prior probability

of community. Recently, Ronhovde & Nussinov [3] introduced an energy function of the

following form that is a local and resolution-limit free model.

ERN({σ}) = −1

2

∑
i̸=j

(Wijaij − γWijaij)δ(σi, σj). (5)

where aij = 1 − aij when i ̸= j and aii = 0. In addition, W = (wij) is a general

weight matrix that assigns a weight to each existing and missing edges. In their work

they proposed to select pin,µ ≥ γ
1+γ

where pin,µ is the probability that two nodes inside

community µ are connected.

Label propagation is another famous algorithm for community detection [4]. Briefly,

the algorithm starts with randomly assigning a community label to each node. Then,

each node updates its label by replacing it by the label most used by its neighbors. It has

been shown that the label propagation method is equivalent to finding the local energy

minima of a simple zero temperature kinetic Potts model [5], i.e.

EKPM({σ}) = −
∑
i̸=j

aijδ(σi, σj). (6)
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The other well-known optimization approaches used in community detection problem

are Simulated Annealing (SA) [6], extermal optimization (DA) [7], expectation maxi-

mization [8], Bayesian inference [9], and variational Bayes [2]. For a comprehensive and

comparative review on this topic we refer the reader to [10].

2 The algorithm framework

Algorithm 1 The algorithm of detecting the position of center and corresponding com-
munity

Require: Graph G with size n and volume m, the algorithm parameters, i.e. f+
µ , f

−
µ

and Rµ in Eq.(4) in the Main text.
Ensure: The community membership matrix X;
1: For a given number of communities K
2: repeat
3: Calculate the top K eigenvector matrix EK = [e1, e2, ..., eK ] and initiate the

community membership X(0) = EK .
4: Update the position of center and corresponding community membership matrix

X to minimize the Eq.(1) in the Main text.
5: Until exceeding the maximum number of iterations
6: Select the optimal number of communities K and corresponding community mem-

bership according to the maximum of Q defined in Eq.(4) in the Main text.

3 Distribution of community tightness.

In order to study the statistical properties of an arbitrary tightness score S(x1, ..., xN) for

nodes drawn independently from the distribution P0(x), the quality function is considered

Z(β) = ΠN
i=1

∫
dxiP0(xi)e

βS(x1,...,xN )

=
∫
dSp(S)eβS.

(7)

To study the computation procedure of p(S), we consider the collection of all con-

figurations of nodes set X with energy E, and p(E) denotes the density of states as a

function of E. If we replace the extensive energy with the intensive quantity, E = Ne,

and use p(E) = 1
N
p(e), there is∫

p(E)e−βEdE = 1
N

∫
e−Nβe+log p(e)

≃ 1
N
eNsupe(log p(e)/N−βe).

(8)
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Next, if N is large enough, we use the saddle-point approximation and get

logZ(β)/N = supe[logp(e)/N ]− βe, (9)

i.e. the normalised logarithm of the partition function, logZ(β)/N = −βf(β), is a

Legendre transform (See the Section 5 in Supplementary Material) of the normalised

logarithm of the probability, log p(e)/N . Exploiting the duality of the Legendre transform,

we get

log p(e) ≃ −Nsupβ[βf(β) + βe] = N [β0e− β0f(β0)]. (10)

with β0 the saddle-point of the function in the squared brackets. Then, there is

log p(E) = log p(e) + log( 1
N
)

≃ N [β0e− β0f(β0)] + log( 1
N
).

(11)

Based on Eq.(11), given all configurations of nodes set X = (x1, ..., xN) with a com-

munity tightness S, p(S) denotes the density of states as a function of tightness S.

Asymptotically for large N , we can extract this density function from Z(β) based on

Eq.(7) as

log p(S) ≃ NΩ(s)− 1

2
log(gN). (12)

Here Ω(s) is the entropy as a function of the tightness per element, i.e. Ω(s) = −maxβ[f(β)+

βs]. βf(β) = − logZ(β)/N is the free-energy density. We define the distribution of com-

munity tightness S as the probability
∫ +∞
S

p(S
′
)dS

′
, which can be used to find a score

larger or equal to S. From analysis above, this is a typical p-value form and can be used

to represent the statistical significance conveniently and directly.

4 The maximum entropy principle.

Assume that we are given a random variable x taking values {x1, ..., xn}, with an unknown

probability distribution p(xi). Additionally, we are also given a prior information about

the random variable: the expected value a of some property, here described by function

f(xi),
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E[f(xi)] =
N∑
i=1

p(xi)f(xi). (13)

The question is: what is the unbiased inference about the distribution p(xi)? In other

words, what is the distribution which does not reduce the amount of uncertainty about

the random variable?

The maximum entropy principle states that the probability distribution should max-

imise the information entropy subject to the prior knowledge about the random variable.

If there is no prior information, the solution is, quite intuitively, a uniform distribution

assigning the same probability to every value of the random variable. In the presence of

a constraint from Eq.(13) and given the normalisation constraint,

N∑
i=1

p(xi) = 1, (14)

we can infer distribution p(xi) using the Lagrange multipliers. The solution is

p(xi) = e−λ−βf(xi), (15)

where constants λ and β are inferred such that Eq.(13) and Eq.(14) are met. The solution

can be written in an equivalent form as

p(xi) = e−βf(xi)/Z(β), (16)

where

logZ(β) = λ, (17)

Z(β) =
∑
i

e−βf(xi) (18)

and importantly

− ∂

∂β
logZ(β) =

∑
i

e−βf(xi)/Z(β)f(xi) = E[f(xi)] (19)

Substituting x for X, a state of a physical system, and f(x) for H(X), the Hamiltonian

of the system, we obtain the Boltzmann distribution. This shows that the Boltzmann

distribution is the maximum entropy distribution for a system with a given observed

energy value.
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Figure 1: Legendre transform of a function. Function f(x) (blue line) can be described
by a set of points of the form (x0, f(x0)). A dual representation is achieved by using a
function tangent to f(x) at x0, (red line). The new set of points is of the form (f ′(x0),
f ∗ (f ′(x0))), where f ∗ (y) is the Legendre transform of f(x) and point f ∗ (f ′(x0)) is an
intercept of the tangent with y-axis.

5 The Legendre transform.

The Legendre transform of a real valued and differentiable function is an operation which

gives a new, dual function f ∗. The idea behind the transformation is that information

about a functional relation, (x0, f(x0)), can be be equivalently expressed by another set

of points of the form (f ′(x0), p0), where p0 is an intercept of the line tangent to f(x) at

point x0 and f ′(x) = ∂f(x)/∂x is the derivative of function f(x) over x, see Fig.1 for an

illustration. The Legendre transform is formally defined as

f ′(x) = sup
x
[xy − f(x)]. (20)

To find a supremum of (xy − f(x)) with respect to x, we solve

∂

∂x
(xy − f(x)) = 0, (21)

which is met by y = ∂
∂x
f(x) = f ′(x). The intercept of the tangent to function f(x) at x0 is

then f ∗(f ′(x0)), so the point (x0, f(x0)) is now mapped to a point (f ′(x0), f
∗(f ′(f(x0))).
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(a) (b)

Figure 2: The performance of significance ⟨F ⟩ on LFR benchmark network and each
point in curves is obtained by testing 100 times. (a) For all five algorithms, the ⟨F ⟩
index decreases with the increasing of mix parameter θ. When θ ≥ 0.5 on average (no
significant community), ⟨F ⟩ is near 0.3 which is similar with GN network. (b) The value
of ⟨F ⟩ corresponding to µ = 0.3 will be larger than µ = 0.1 for the Hofman & Wiggins
method and Label propagation method.

An important property of the Legendre transform is its duality: function f is also a

Legendre transform of f∗,

f(x) = sup
y
[xy − f ∗(x)]. (22)

As we will show later in this chapter, the intensive entropy and the intensive free energy

of a system are in such a dual relation,

ω(e) = sup
β
[βe− βf(β)]. (23)

6 Experiments

A. LFR benchmark network. We also test the index on the more challenging LRF

benchmark presented by Lancichinetti, Fortunato and Radicchi [11]. In the LFR bench-

mark, each node is given a degree took from a power law distribution with an exponent

γ, and the sizes of the communities are took from a power law distribution with an ex-

ponent β. Moreover, each node shares a fraction 1− θ of its links with other nodes of its

community and a fraction θ with other nodes in the network, θ is the mixing parameter.

In this network, the average degree k = 20, maximum degree is 50 and P (k) ∝ kγ.
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Maximum and minimum community sizes are 50 and 20 respectively. The significance

score changes when we adjust the value of θ in LFR benchmark, and numerical results

in the LFR-benchmark are shown in Fig.2(a). It can be observed that with the augment

of θ, F decreases for all five optimization methods when µ = 0.3. Same as GN network,

the ⟨F ⟩ values corresponding to Hofman & Wiggins method is largest at the begining,

and the Label propagation method is the lowest. However, the ⟨F ⟩ values corresponding

to Ronhovde & Nussinov method will exceed Hofman & Wiggins method when when θ

is larger than 0.4. Furthermore, when θ larger than 0.32, the ⟨F ⟩ value corresponding to

Label propagation method is close to Modularity optimization method. In addition, from

Fig.2(b), it can be observed the value of ⟨F ⟩ corresponding to µ = 0.3 will larger than

µ = 0.1 when we take the Hofman & Wiggins method and Label propagation method as

examples.

B. Stochastic block model. Finally, we consider the famous stochastic block model

which used to detect community structure by Decelle and Zhang et al [12] [13] [14]. In

this benchmark, each node i has a hidden label ti ∈ {1, ..., q}, specifying which of q groups

it is a member of. These labels are chosen independently, where ya is the probability that

a given node has label a ∈ {1, ..., q} (normalized so that
∑q

a=1 ya = 1). For each pair of

nodes i, j with i < j, we put an edge between i and j independently with probability

pti,tj , leaving them unconnected with probability 1 − pti,tj . Our goal is to learn the

parameters q, {ya}, {pab} of the block model, as well as the true group assignments {ti}.

Special cases of this model have often been considered in the literature. Here, a special

case is considered, i.e. the planted partitioning, when ya = 1/q, cab = cout for a ̸= b and

caa = cin with cin > cout, is a classical problem in computer science and has been used

as a benchmark for community detection. Here, ε = cout/cin is the parameter used to

control the fuzziness of generated network.

To verify the performance on sparse stochastic block model with low average degree,

we generate a large network with N = 5000 nodes and q = 10 groups with average degree
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Figure 3: The performance of social significance ⟨F ⟩ on stochastic block model. In this
example, there are N = 5000 nodes and q = 10 groups. The average degree c = 8
and parameter ε = cout/cin is used to control the fuzziness of generated network. Each
point in curves is obtained by testing 100 times. With the increasing of ε, the ⟨F ⟩ index
decreases. For all algorithm, when the corresponding ⟨F ⟩ is nearly larger than 0.3 on
average(ε ≈ 0.4), there exists significant community structure which may detectable.

c = 8, which shown in Fig.3. Each point in curves is the result averaged by testing 100

times. When ε is close to 0, it can be observed the community structure is quite strong

and the corresponding ⟨F ⟩ value of all five algorithms are very high when µ = 0.3. In

contrast, when ε is increased close to 0.8, the network is nearly a fuzzy random one,

and all ⟨F ⟩ values are very low, near 0.1-0.3. Furthermore, we find that the ⟨F ⟩ value

of Hofman & Wiggins method will larger than all others when ε < 0.81, while lower

than Ronhovde & Nussinov method when ε > 0.81. Specifically, we argue that for all

algorithm when the corresponding ⟨F ⟩ is nearly larger than 0.3 on average(ε ≈ 0.4), there

exists significant community structure which may detectable [12]. Form the results, the F

shows a great ability in characterizing the significant modular structure for optimization

methods as we adjust the parameter ε.

C. Real network. Finally, we show significance can also be used to rank the real

network partitions obtained by different algorithmic strategies. Zachary karate club net-

work, Collage football network and Political books network are employed as the examples.
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Tabel 1 presents the results estimated from three algorithms and we observed that they

are coincided with the analysis in artificial networks. These observations are no evidence

of overall superiority of one method over another, but an example of how to compare the

significance and use the different partitioning algorithms on a given network.

Table 1: Comparison of various algorithms with ⟨F ⟩ values.
Networks Algorithms Values of ⟨F ⟩

Zachary network
Label propagation method 0.641
Girvan-Newman algorithm 0.735

RB Potts 0.827

Collage football network
Label propagation method 0.602
Girvan-Newman algorithm 0.758

RB Potts 0.831

Political books network
Label propagation method 0.581
Girvan-Newman algorithm 0.698

RB Potts 0.717
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