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COMMENTARY | INSIGHT

The network takeover

Albert-Laszl6 Barabasi

Reductionism, as a paradigm, is expired, and complexity, as a field, is tired. Data-based mathematical
models of complex systems are offering a fresh perspective, rapidly developing into a new discipline:
network science.

greatly exaggerated. It is so ing d  problem: complexity. we hit the limits of reductionism. No

in our thinking that if one day some A better understanding of the pieces need to mount a defence of it. Instead, we
magical force should make us all forget it, cannot solve the difficulties that many need to tackle the real question in front of
we would promptly have to reinvent it. The  research fields currently face, from cell us: complexity.
real worry is not with reductionism, which,  biology to software design. There is no The complexity argument is by no
as a paradigm and tool, is rather useful. ‘cancer gené. A typical cancer patient means new. It has re-emerged repeatedly
It is necessary, but no longer sufficient. has mutations in a few dozen of about during the past decades. The fact that it is

R eports of the death of reductionism are ~ points to a new way to handle a century-old  science are rooted in the same problem:

But, weighing up better ideas, it became 300 genes, an elusive combinatorial still fresh underlines the lack of progress

aburden. problem whose complexity is increasingly achieved so far. It also stays with us for
“You never want a serious crisis to go aworry to the medical community. No good reason: complexity research is a

to waste,” Ralph Emmanuel, at that time single regulation can legislate away the thorny undertaking. First, its goals are

Obama’s chief of staff, famously prodaimed ~ economic malady that is slowly eating
in November 2008, at the height of the at our wealth. It is the web of diverging
financial meltdown. Indeed, forced by an financial and political interests that
imminent need to go beyond reductionism,  makes policy so difficult to implement.
anew network-based paradigm isemerging ~ Consciousness cannot be reduced to a

easily confusing to the outsider. What
does it aim to address — the origins of
social order, biological complexity or
economic interconnectedness? Second,
decades of research on complexity were

that is taking science by storm. It relies single neuron. It is an emergent property driven by big, sweeping theoretical ideas,
on datasets that are inherently incomplete that engages billions of synapses. In fact, inspired by toy models and differential
and noisy. It builds on a set of sharp tools, the more we know about the workings equations that ultimately failed to deliver.

Think synergetics and its slave modes;
think chaos theory, ultimately telling

developed during the past decade, that of individual genes, banks or neurons,
seem to be just as useful in search engines the less we understand the system as a

as in cell biology. It is making a real impact  whole. Consequently, an increasing number  us more about unpredictability than
from science to industry. Along the way it~ of the big questions of contemporary

how to predict nonlinear systems; think
self-organized criticality, a sweeping
collection of scaling ideas squeezed into
asand pile; think fractals, hailed once as
the source of all answers to the problems
of pattern formation. We learned a lot,
but achieved little: our tools failed to
keep up with the shifting challenges that
complex systems pose. Third, there is a
looming methodological question: what
should a theory of complexity deliver?
A new Maxwellian formula, condensing
into a set of elegant equations every
ill that science faces today? Or a new
uncertainty principle, encoding what
we can and what we can’t do in complex
systems? Finally, who owns the science of
complexity? Physics? Engineering? Biology,
mathematics, computer science? All of the
above? Anyone?

These questions have resisted answers
for decades. Yet something has changed
Network universe. A visualization of the first large-scale network explicitly mapped out to explore the in the past few years. The driving force

|large-scale structure of real networks. The map was generated in 1999 and represents a small portion
of the World Wide Web™ this map has led to the discovery of scale-free networks. Nodes are web
documents; links correspond to URLs. Visualization by Mauro Martino, Alec Pawling and Chaoming Song,

behind this change can be condensed
into a single word: data. Fuelled by cheap
sensors and high-throughput technologies,
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Catching the “Network Science” Bug:
Insight and Opportunity for the Operations Researcher

David L. Alderson
Operations Research Department, Naval Postgraduate School, Monterey, CA 93943 USA, dlalders@nps.edu

Recent efforts to develop a universal view of complex networks have created both excitement and confusion
about the way in which knowledge of network structure can be used to understand, control, or design system
behavior, This paper offers perspective on the emerging field of “network science” in three ways, First, it
briefly summarizes the origins, methodological approaches, and most celebrated contributions within this
increasingly popular field. Second, it contrasts the predominant perspective in the network science literature
(that abstracts away domain-specific function and instead focuses on graph theoretic measures of system
structure and dynamics) with that of engineers and practitioners of decision science (who emphasize the
importance of network performance, constraints, and tradeoffs). Third, it proposes optimization-based reverse
engineering to address some important open questions within network science from an operations research
perspective. We advocate for increased, yet cautious, participation in this field by operations researchers.
Subject classifications: networks/graphs: theory; philosophy of modeling; engineering

Area of review: O.R. Forum

History: Received February 2007; revision received October 2007; accepted January 2008.

1. Introduction

Recent attention on the large-scale structure of many vital network systems has led to the prolif-
eration of new theories that attempt to explain, predict, and control network behavior and evolu-
tion. The ubiquity of the network paradigm across many important and practical applications—
including the Internet and communication systems, manufacturing systems and supply chains,

national infrastructures, military systems, global markets, and social organizations—has created

significant interest in whether there exist universal properties of networks that may be discovered

and then applied in order to understand and manage them. To empower operations researchers

looking to capitalize on these rch trends, this article provides a review and commentary about

the paotential benefits and pitfalls of recent approaches to “complex networks

As documented in a 2006 National Research Council (NRC) report, a new research field called

“network science” is focused on an interdisciplinary view of complex network systems. The NRC

Report describes progress in this field and summarizes efforts to establish network science as

an academic discipline. The scientific literature over the last several years (as measured by the
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« Football team network
(S. White, P. Smyth, SZAM conference, 2004)

o Karate (FF1g) club network
(W. W. Zachary, |. Anthropol. Res. 33,452 1977)

o Journal index network

(M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A. 104, 7327
2007)
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» The nodes in a sub-network are densely linked but
are sparsely linked with that in other sub-networks
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F. Radicchi et. al. Proc. Natl. Acad. Sci. USA (PNAS), Vol.101, No.9, 2658-
2663, 2004
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F. Radicchi et. al., Proc. Natl. Acad. Sci. USA (PNAS),Vol.101, No.9, 2658-2663,
2004
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L(Vs, Vs) > L(Vs, V\Vs)

X8 XHR AL A4 )55 € X (weak definition).

F. Radicchi et. al., Proc. Natl. Acad. Sci. USA (PNAS), Vol.101, No.9, 2658-
2663,2004
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L(Vs, Vs) > L(Vs, Vj), any j#s

X — 3 PR A 45 M 8 59 € X (most weak

definition).

Huy, Y., at al., Comparative definition of community and corresponding
identifying algorithm
Physical Review E, 78(2) 026121, 2008
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%M (parameterized complexity) A
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Reed B, et a/, Finding odd cycle transversals, Operations Kesearch
Letters, 2004

Huffner F., Algorithm engineering for optimal graph bipartization,
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Optimization of Q (%)
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Fortunato and Barthe” lemy,
2007

Fortunato, S., Barthelemy,
M. (2007) Proc. Natl
Acad. Sci. USA 104, 36-41.

Rosvall, M., Bergstrom,
C.T, (2007) Proc. Natl.
Acad. Sci. USA 104, 7327-
331.
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» X.S.Zhang, et al., Modularity optimization in community
detection of complex networks

o EPL,87 (2009) 38002 (EPL 2009 BEST PAPER)
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Optimization-based reverse-engineering (#)
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X. 8. Zhang, R. S. Wang, Y. Wang, ]. Wang, Y. Qiu, L. Wang and L. Chen
“Modularity optimization in community Detection of complex networks”

(Europhycs Letter, 2009 Best Paper)
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A combinatorial model and algorithm for globally searching community
structure in complex networks,

J. Comb. Optim., Volume 23, Number 4, 425-442,2012.
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X.-S. Zhang, Z. Li, R.-S. Wang, Y. Wang,

A combinatorial model and algorithm for globally searching community
structure in complex networks,

J. Comb. Optim., DOI 10.1007/s10878-010-9356-0, 2010
J.Zhang, Y.Qiu, X.-S. Zhang,
Detecting community structure: from parsimony to weighted parsimony,
J. Syst. Sci. Complex 23: 1024-1036,2010
X.-S. Zhang, R.-S. Wang, Y. Wang, J. Wang, Y. Qiu, L. Wang, and L.Chen,
Modularity optimization in community detection of complex networks,
Europhysics Letters, 87:38002(6pp), doi:10.1029/0295-5075/87 /38002, 2009
Z.Li, S.Zhang, R.Wang, X.-S. Zhang and L.Chen,
Quantitative function for community detection,

Physical Review E, 77,036109, 2008, selected for the March 15, 2008 issue of
Virtual Journal of Biological Physics Research
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