__PPINA__: Alignment of protein interaction networks by integer quadratic programming !!!Reference * Zhenping Li, Yong Wang, Shihua Zhang, Xiang-Sun Zhang, Luonan Chen. __Alignment of protein interaction networks by integer quadratic programming__. In ''Proceedings of 28th Annual International Conference of IEEE Engineering in Medicine and Biology Society'', 1:5527-5530, 2006. !!!Supplementary Materials !!Fig. 1. An tutorial network alignment example from PathBLAST plug-in of Cytoscape software. The corresponding relation of labels and their number order of Net A. {{{ A1----A A2----B A3----C A4----D A5----E A6----F A7----G A8----H A9----I A10---J A11---K A12---L }}} The corresponding relation of label and their number order of Net B. {{{ B1-----AA B2-----BB B3-----CC B4-----DD B5-----HH B6-----MM B7-----ZZ B8-----NN B9-----QQ B10----JJ B11----OO B12----WW }}} The adjacent matrices of the two networks A and B and their similarity matrix S {{{ A =[ 0 0.10 0.70 0.01 0 0 0 0 0 0 0 0 0.10 0 0 0.30 0 0 0.01 0 0.02 0 0 0 0.70 0 0 0 0 0.20 0.01 0 0 0 0 0 0.01 0.30 0 0 0.2 0 0.01 0 0 0 0 0 0 0 0 0 0.20 0 0 0 0 0.01 0 0 0 0 0 0.20 0 0 0 0 0 0 0 0 0 0 0.01 0.01 0.01 0 0 0 0.70 0 0 0 0 0 0 0 0 0 0 0.70 0 0 0 0 0 0 0.02 0 0 0.01 0 0 0 0 0.30 0.01 0.60 0 0 0 0 0 0 0 0 0.30 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0.60 0 0 0 ]; }}} {{{ B =[ 0 0 0 0 0 0 0.01 0.20 0.10 0 0 0 0 0 0 0.01 0.70 0 0 0 0.70 0.01 0 0 0 0 0 0 0 0.02 0.20 0.10 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0.10 0.01 0 0.70 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0 0 0 0 0 0 0 0 0.01 0 0.20 0 0 0 0 0 0 0 0 0 0.20 0 0.10 0 0 0 0 0 0 0 0 0 0.10 0.70 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0.10 0 0 0 0 0 0 0 0 0 0 0 0.01 0 0 0 0 0 0 0 0 ] ; }}} {{{ S =[ 0.1 0.1 0.1 0.8 0.5 0.1 0.1 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.1 0.8 0.8 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.8 0.1 0.1 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.1 0.1 0.8 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.8 0.8 ] ; }}} !!Fig. 2. The simulated example of two directed networks The adjacent matrices of the two networks A and B {{{ A =[ 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; }}} {{{ B =[ 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]; }}} Similarity matrix {{{ S =[ 0.8 0.2 0.9 0.3 0.5 0.5 0.6 0.1 0.3 0.2 0.1 0.4 0.2 0.6 0.3 0.4 0.2 0.2 0.2 0.2 0.1 0.1 0.2 0.4 0.3 0.2 0.7 0.2 0.3 0.7 0.2 0.3 0.3 0.3 0.3 0.1 0.1 0.2 0.3 0.8 0.2 0.4 0.5 0.3 0.8 0.2 0.2 0.3 0.2 0.2 0.3 0.4 0.6 0.4 0.3 0.2 0.3 0.2 0.4 0.2 0.4 0.3 0.3 0.2 0.2 0.4 0.2 0.1 0.1 0.6 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.3 0.3 0.4 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.4 0.4 0.4 0.3 0.3 0.5 0.4 0.6 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.6 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0.2 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.4 0.5 0.2 0.3 0.1 0.4 0.1 0.5 0.2 0.2 0.1 0.1 0.2 0.2 ]; }}} ---- Category: [Supplementary]